

Serving the Communities of Compton, Lynwood, Paramount and Willowbrook, as well as portions of Athens, Bellflower, Carson, Downey, Dominguez, Lakewood, Long Beach, and South Gate

1111 East Artesia Boulevard Compton, CA 90221-5393 Phone: (310) 900-1600 Fax: (310) 605-1458 www.compton.edu

SONIA LOPEZ President

BARBARA CALHOUN Vice President

JAUNITA DOPLEMORE Clerk

DR. SHARONI LITTLE Member

ANDRES RAMOS Member

KEITH CURRY, Ed.D. President/CEO April 5, 2022

Hon. Toni Atkins, President Pro Tem California Senate 1021 O Street, Suite 8518 Sacramento, CA 95814

Senator Nancy Skinner, Chair Senate Budget Committee 1021 O Street, Suite 8630 Sacramento, CA 95814 Hon. Anthony Rendon, Speaker California Assembly State Capitol, Room 219 Sacramento, CA 95814

Assemblymember Phil Ting, Chair Assembly Budget Committee P.O. Box 942849 Sacramento, CA 94249-0019

Re: Compton College Physical Education Complex Replacement Project Funding Request - Soil Mitigation Requirements

Dear Honorable Toni Atkins, Honorable Anthony Rendon, Honorable Nancy Skinner, and Honorable Phil Ting,

The Compton College Physical Education Complex Replacement Project involves the replacement of the existing physical education facilities with appropriate space to support modern instruction and learning methodologies.

The existing physical education facilities include the men's shower/locker and special services buildings constructed in 1953. The gymnasium and pool service buildings were built in the early 1960s. There has been no comprehensive renovation of these buildings. The facilities are currently configured as 'make-shift' instructional spaces. The women's shower and locker areas are locked and unused because the systems have failed, and the facility is inadequate to support any campus function. Third-party engineering evaluations indicated that mechanical, electrical, and plumbing systems are dying, and structural and life/safety systems do not conform to current standards.

The Compton College current gymnasium is used heavily by students and community members. This facility is a critical resource in the Compton community. The State approved the replacement of the facility with a budget of \$45,576,000.00 (\$23,082,000.00 State-funded - \$22,494,000.00 District funded).

However, in the summer of 2021, during the development of the structural design and geotechnical investigation report, Compton College received notification from structural and geotechnical engineers that there was a soil issue under the Physical Education Complex Replacement project footprint, which has resulted in an increased cost of \$5,800,000, not including inflation. The Geotechnical Investigation Report for Compton Community College District is dated July 7, 2021.

It was determined that a significant amount of soil mitigation needs to be done underneath the foundation of the new building and pool. Due to several conditions, including the new 2019 California Building Code requirements and the state of the soil under the location for the new gymnasium and pool, a much more rigorous and expensive method of soil mitigation, need to be done. When this project was submitted to the California Community Colleges Chancellor's Office, the 2019 California Building Code was not in place. The costs for this soil mitigation were not included in the original project budget.

Compton College requested additional funds for the project from the California Community Colleges Chancellor's Office on October 27, 2021, and the request was denied on November 19, 2021, due to funding.

Therefore, Compton College requests additional funding from the State from Proposition 98 funds of \$5.8 million, not including inflation. The estimated cost includes the installation of stone columns under the gymnasium and deep soil mixing under the pool and pool house. The duration of this work is estimated at six months. In addition to the cost for the soil mitigation work, there will be additional soft costs (e.g., for a full-time soils inspector to monitor the contractor doing the work, an additional cost for the Division of State Architect project inspector, special testing, additional Division of State Architect fees, etc.).

For the above reasons, Compton College respectfully requests your support for additional funds from the 2022-2023 State of California Budget for \$5.8 million for the Compton College Physical Education Complex Replacement Project. If you or your staff have any questions, please contact me at <u>kcurry@compton.edu</u> or (310) 900-1600, ext. 2000.

Sincerely,

Keith Curry President/CEO Compton College

> cc: Compton Community College District Board of Trustees Honorable Senator Steven Bradford, California State Senate – 35th District Honorable Assemblymember Mike A. Gipson, California State Assembly - District 64 Honorable Nancy Skinner, Chair, Joint Legislative Budget Committee, Senate Budget, and Fiscal Review Committee Honorable Anthony Portantino, Chair, Senate Appropriations Committee Honorable John Laird, Chair, Senate Budget, and Fiscal Review Subcommittee No. 1 Honorable Phil Ting, Chair, Assembly Budget Committee Honorable Chris Holden, Chair, Assembly Appropriations Committee Honorable Kevin McCarty, Chair, Assembly Budget Subcommittee No. 2 Honorable Jim Nielsen, Vice Chair, Senate Budget, and Fiscal Review Committee Honorable Vince Fong, Vice-Chair, Assembly Budget Committee Gabriel Petek, Legislative Analyst (3) Joe Stephenshaw, Staff Director, Senate Budget and Fiscal Review Committee Kirk Feely, Fiscal Director, Senate Republican Fiscal Office Christopher W. Woods, Senate President pro Tempore's Office (2) Christian Griffith, Chief Consultant, Assembly Budget Committee Joseph Shinstock, Fiscal Director, Assembly Republican Caucus, Office of Policy and Budget Paul Dress, Caucus Co-Chief of Staff, Assembly Republican Leader's Office

Luigi Luciano, Legislative Director, Assembly Republican Leader's Office Jason Sisney, Assembly Speaker's Office (2) Mark McKenzie, Staff Director, Senate Appropriations Committee Jay Dickenson, Chief Consultant, Assembly Appropriations Committee

Enc

GEOTECHNICAL INVESTIGATION REPORT

PHYSICAL EDUCATION COMPLEX REPLACEMENT COMPTON COMMUNITY COLLEGE DISTRICT

Compton, CA

PREPARED FOR:

Compton Community College District 1111 East Artesia Boulevard Compton, CA 90221

PREPARED BY:

Atlas Technical Consultants LLC 14457 Meridian Parkway Riverside, CA 92518

14457 Meridian Parkway Riverside, CA 92518 (951) 697-4777. | oneatlas.com

July 7, 2021

Atlas No. 10-57575PW Report No. 1

Ms. LINDA OWENS, CHIEF FACILITIES OFFICER COMPTON COMMUNITY COLLEGE DISTRICT 1111 EAST ARTESIA BOULEVARD COMPTON, CA 90221

Subject: Geotechnical Investigation Compton College PE Complex Replacement Compton Community College District 1111 East Artesia Boulevard, Compton, CA 90221

Dear Ms. Owens:

Atlas Technical Consultants (formerly United Heider Inspection Group) is pleased to present this geotechnical investigation report for the proposed Physical Education Complex Replacement, Compton College located at 1111 East Artesia Boulevard in the city of Compton, California.

The purpose of our investigation was to explore the subsurface conditions with respect to the planned improvements, to evaluate the general soil characteristics, and to provide geotechnical recommendations for design and construction. This investigation is based on the plan provided by Struere, Inc. and our correspondences with the district and the project construction and design team.

Based upon our study and investigation, the proposed development is feasible from a geotechnical viewpoint, provided our recommendations are incorporated in the design and construction of the project. The most significant design considerations for this project are compressible soil at the near surface, liquefaction and seismic settlement, and seismic shaking. We have evaluated the appropriate foundation systems to support the proposed building and other improvements. This report presents our findings, conclusions, and geotechnical recommendations for the project.

If you have any questions, please call us at (951) 697-4777.

Respectfully submitted, Atlas Technical Consultants LLC ROFESSIO MEHRAB JESMAN GE 3175 EXP.9/30/2 GEOTECHNICAL Mehrab Jesmani, PhD, PE, GE Douglas A. Skinner, PG, CEG Senior Geologist Senior Engineer MJ:DS:ds Distribution: sphillips@pcm3.com

CONTENTS

1.	INTF	RODUC	ΓΙΟΝ	1
	1.1	Site Lo	cation and Description	1
	1.2	Propos	sed Development	1
	1.3	-	se and Scope	
2.	GEC		AND GEOTECHNICAL FINDINGS	3
	2.1		nal Geology	
	2.1	-	rface Conditions	
	2.2	2.2.1	Expansion Potential	
		2.2.1	Corrosivity Potential	
		2.2.2	Excavatability	
	2.3	-	dwater	
	-			
3.			SEISMICITY AND SEISMIC HAZARDS	
	3.1		g and Primary Seismic Hazards	
		3.1.1	Regional Seismicity	
	3.2		dary Seismic Hazards	
		3.2.1	Liquefaction	
		3.2.2	Seismically Induced Settlement	
		3.2.3	Earthquake-Induced Lateral Displacement	
		3.2.4	Surface Manifestations of Liquefaction	
		3.2.5	Seismically Induced Landslide	
		3.2.6	Hydro-Collapsible Soils	
		3.2.7	Other Hazards	10
4.	CON		ONS AND RECOMMENDATIONS	
	4.1	Earthw	/ork	
		4.1.1	Site Preparation	11
		4.1.2	Excavation/Overexcavation in Building Pad Area and the	
			Exterior Flatwork Area for Slab-On-Grade	
		4.1.3	Fill Placement and Compaction	
		4.1.4	Fill Materials	
	4.2		eismic Design Parameters	
	4.3	Soil Tr	eatment	
		4.3.1	Deep Soil Mixing, Preliminary Recommendations	
		4.3.2	Settlement of the Treated soil	16
		4.3.3	Continuous Foundation System Supported by Deep Soil Mixing (DSM)	
			Columns	
	4.4		Footings	
	4.5		ance to Lateral Loads	
	4.6		n-Grade	
	. –	4.5.1	Exterior Concrete	
	4.7		re/Vapor Mitigation for Concrete Floor Slab-on-Grade	
	4.8		prary Excavations	
	4.9	Minor I	Retaining Wall	19

	4.10	Surface Drainage	20
	4.11	Trench Backfill	20
	4.12	Preliminary Pavement Section	21
		4.12.1 Asphalt Concrete (AC) Pavement	21
		4.12.2 Portland Cement Concrete Pavement	22
	4.13	General Note for Concrete and Rebar Recommendation	23
	4.14	Percolation Test	23
	4.15	Construction Observation and Testing	25
		Limitations	
5.	REFE	ERENCES	25

TABLES

Table 1 – Corrosion Results (UHIG, 2015)	5
Table 2 – Characteristics and Estimated Earthquakes for Regional Faults	
Table 3 – California Building Code Seismic Design Parameters	
Table 4 – 2019 California Building Code / ASCE 7-16 Site-Specific Parameters	
Table 5 – Earth Pressures for Retaining Walls	19
Table 6 – Asphalt Pavement Sections	
Table 7 – Vehicular PCC Pavement Sections	22
Table 8 – Deep Borehole Percolation Rate Test Results	24
Table 9 – Shallow Borehole Percolation Rate Test Results	24
Table 10 – Reduction Factors	24

FIGURES

- Figure 1 Site Vicinity Map
- Figure 2 Geotechnical Map
- Figure 3 Regional Geology Map
- Figure 4 Regional Fault Map
- Figure 5 Regional Seismicity Map
- Figure 6 Liquefaction Susceptibility Map
- Figure 7 Geologic Cross-Section A-A' and B-B'
- Figure 8 Ground Water Contours

APPENDICES

- Appendix I Figures
- Appendix II Field Exploration
- Appendix III Laboratory Test Procedures And Test Results
- Appendix IV Liquefaction Results
- Appendix V Site-Specific Ground Motion Hazard Analysis Results
- Appendix VI Infiltration Test Results
- Appendix VII Historic Seismic Events

1. INTRODUCTION

1.1 Site Location and Description

The project site is located within the south portion of the Compton College Campus in the city of Compton, California. The project site is surrounded by landscaped areas to the north, a building and a landscaped area to the south, the Vo-Tech Building and the Stadium to the west, and the Theater and Health Buildings and a Courtyard area to the east. Figure 1 presents the site location. The project location, measured on a Google Earth map, has a latitude reading of North 33.87696° and longitude reading of West 118.21110°. These coordinate readings should be considered accurate only to within an approximately 50-foot radius as implied by the method used.

1.2 Proposed Development

We understand this project will include the demolition of the existing Physical Education Complex, and the design and construction of a new two-story Physical Education (PE) building, pool house, a new pool, and parking areas. The proposed PE building will have a footprint of approximately 43,000 square feet. Information provided by the Project Structural Engineer indicate that the building will have wide spans with an estimated maximum column load for Dead and Live load on the order of about 241 kips with an average of about 100 Kips and the maximum load including seismic load (Dead, Live and Earthquake) on the order of about 554 kips. Infiltration BMPs are also planned at depths of either approximately 3 to 5 feet below existing grade or approximately 25 feet below existing grade.

We anticipate that the new building will be designed and constructed under the 2019 California Building Code (CBC).

1.3 Purpose and Scope

The purpose of our investigation has been to evaluate general engineering characteristics of the earth materials with respect to the planned improvements for the proposed PE building and associate improvements, such as a new pool and parking lot, BMP, and infiltration system, and to provide geotechnical recommendations for design and construction of the proposed project.

Our scope of work included the following tasks:

- **Background Review** A background review of readily available, relevant, local and regional geology maps, geohazard maps, geotechnical reports, and literature pertinent to the proposed improvements was performed.
- **Pre-Field Investigation Activities** Prior to our drilling activities, we conducted a site reconnaissance to locate proposed boring locations for access and for coordination with Underground Service Alert (USA).

- Field Investigation Our field investigation consisted of excavation, logging and sampling of 15 borings to depths ranging from about 5 feet to 61.5 feet below the ground surface within the project improvements. The borings were drilled using either a hand auger or a truck mounted hollow-stem auger drill rig. Each boring was logged by a qualified member of our technical staff. Relatively undisturbed soil samples were obtained at selected intervals within the borings using a California Ring Sampler. Standard Penetration Tests (SPTs) were also conducted at selected depths within the borings, and soil samples were obtained. Bulk samples of representative soil types were also obtained from the borings. Borings B-11, B-13, and B-14 were converted to and used as borehole percolation test points. Additionally, a fourth borehole percolation test point, P-4, was drilled using a hand auger. The borings were backfilled in accordance with regulatory requirements. Logs of the borings are presented in Appendix II. Boring locations are shown on Figure 2 (Boring Location Map).
- Laboratory Tests Laboratory tests were performed on selected soil samples obtained during our field investigation. The laboratory testing program was designed to evaluate the physical and engineering characteristics of the on-site soils. Tests performed during this investigation include:
 - In situ moisture content and dry density of existing soils.
 - Particle Size Analysis to characterize the soil type according to USCS, and to assist in the evaluation of liquefaction susceptibility of granular soil.
 - Atterberg limit tests to classify and characterize of the engineering properties of soils.
 - Direct shear to evaluate the strength characteristics of the on-site materials.
 - Expansion Index test to evaluate the expansion potential of the on-site material.
 - R-Value.
 - #200 Wash.
 - Soil Corrosivity.
 - Collapse/Swell potential of soil.

All laboratory tests were performed in general conformance with ASTM Standard Methods and California Test Methods. The results of the in-situ moisture and density tests are shown on the boring logs (Appendix I). Results of the other laboratory tests are provided in Appendix III.

- Engineering Analysis The data obtained from our background review, field exploration, and laboratory testing program were evaluated and analyzed in order to develop the conclusions and recommendations for the site.
- **Report Preparation** The results of this investigation have been summarized in this report, presenting our findings, conclusions and recommendations for the proposed project.

2. GEOLOGIC AND GEOTECHNICAL FINDINGS

2.1 Regional Geology

The site is mapped on the South Gate Quadrangle and is situated on the Downey Plain within the Los Angeles metropolitan region. The Downey Plain is located at the convergence of two major physiographic/geomorphic provinces, the Transverse Ranges and the Peninsular Ranges, and includes rugged mountains, hills, valleys, and alluvial plains. The east-west trending Transverse Ranges are irregular to the main northwest structural grain of California. The Transverse Ranges were uplifted along east to west-trending thrust faults and folds (Crowell, 1976; Wright, 1991; and Ingersoll and Rumelhart, 1999). The central Los Angeles basin is divided by a mountain range, the Santa Monica Mountains. The leading structure in the area is the north-dipping Santa Monica-Hollywood–Raymond fault system, located at the southern boundary of the Transverse Ranges. The Los Angeles basin itself is part of the northern Peninsular Ranges Geomorphic Province, which extends southeastward into Baja California, Mexico. The Transverse Ranges are formed by mildly metamorphosed sedimentary and volcanic rocks of Jurassic age that have been infringed by mid-Cretaceous plutonic rocks of the southern California batholith and rimmed by Cenozoic sedimentary rocks (Gastil et al., 1981; Schoellhamer et al., 1981). The Los Angeles greater basin is also part of the onshore portion of the California continental borderland, characterized by northwest-trending offshore ridges and basins, formed primarily during early and middle Miocene time (Legg, 1991; Wright, 1991; and Crouch and Suppe, 1993). The thickness of the predominantly Neogene-age sedimentary fill in the central depression of the Los Angeles basin, a structural low between the Whittier and Newport-Inglewood faults, is estimated to be about 30,000 feet (Yerkes et al., 1965).

Major northwest-trending strike-slip faults such as the Whittier, Verdugo, Northridge, Sierra Madre, Newport–Inglewood, and Palos Verdes faults dominate the great basin. In addition to these surface faults, significant buried thrust faults in the general site vicinity in the Los Angeles basin include the lower and upper Elysian Park thrust faults, the Compton thrust, and the Puente Hills thrust (Shaw, et al., 2002; Bilodeau, et. al., 2007).

The youngest surficial deposits are Holocene sediments of modern alluvial fans, stream channels (i.e., Los Angeles and San Gabriel Rivers), and their flood plains. These debris-flow, sheet flood, and fluvial deposits consist of boulder, cobble, and pebble gravel lenses and sheets, interbedded with sand, silt, and clay derived from the surrounding highlands. Although the thickness of these sediments is usually less than 100 feet (30 m), they are locally as thick as 200 feet (60 m), and the fluvial sediments are roughly graded, with the lower parts containing coarser material. A narrow zone of well-sorted, fine to medium-grained dune sand, as thick as 70 feet (21 m), is located near the coast between Santa Monica and the Palos Verdes Hills (DWR, 1961; Yerkes et al., 1965). Since about 6 thousand years ago, when postglacial sea level had risen to near its present level, coastal estuaries and tidal marshes formed and became filled with organic-rich, fine-grained sediment that extended as far as 4 miles (6.4 km) inland from the mouths of the

streams (Yerkes et al., 1965). Real estate development has now transformed most of these estuaries and marshes into marinas and residential areas (Bilodeau, et al., 2007).

Based on a review of the California Geologic Survey geologic maps of the Long Beach 30' x 60' Quadrangle (CGS, 2010; 2016), the site area is mapped as being underlain by younger alluvial deposits (or Young Alluvium, Unit 2), as shown on Figure 3 (Regional Geology Map). As shown on this geologic map, the project site and much of the project vicinity are underlain by Holocene to Late Pleistocene age Younger Alluvial Fan Deposits (Qyf), described by the California Geological Survey (2010) as "unconsolidated to slightly consolidated, unvisited to slightly dissected boulder, cobble, gravel, sand, and silt deposits issued from a confined valley or canyon" as "Young alluvium, Unit 2" by the California Geological Survey (2016).

2.2 Subsurface Conditions

The site in unpaved areas generally is underlain by about ½ foot of grass/topsoil/surficial fill and young alluvial deposits of Holocene to late Pleistocene age (Qya₂) as shown on the geologic cross sections (Figures 7 and 8). The young alluvial deposits encountered at the site are predominantly comprised of inter-layered Silty SAND and Sandy SILT. In general, the near-surface sandy soils layers are mostly loose to medium dense, and sandy soils layers at depth are medium dense to dense in relative density. The near-surface, fine-grained soil layers are mostly firm to stiff and stiff to very stiff at depth in consistency.

Important geotechnical characteristics of the subsurface soils that are relevant for the proposed developments are discussed briefly in the following subsections.

2.2.1 Expansion Potential

Samples of the sub-surface soils within the project site that were tested had expansion indexes of 9 and 2, generally indicating very low to low expansion potential. The Geotechnical and Soil Investigation Report prepared by United Heider Inspection Group (UHIG, 2018) for the nearby project (Student Service Building) reported a medium expansion potential for the site (EI=56). Based on this finding and our experience with similar type of materials, generally the on-site soils are anticipated to contain a low expansion potential (per ASTM D4829).

2.2.2 Corrosivity Potential

In general, soil environments that are detrimental to concrete have high concentrations of soluble sulfates and/or pH values of less than 5.5. Section 19.3.2 of ACI 318 (ACI, 2014), as referred in the 2019 CBC, provides specific guidelines for the concrete mix-design when the soluble sulfate content of the soil exceeds 0.1% by weight or 1,000 parts per million (ppm). The County of Los Angeles (2013) recommends implementing mitigation measures to protect any concrete structures when soluble sulfate concentrations are equal to or greater than 2,000 ppm in soil and 1,000 ppm in groundwater.

Samples of the subsurface soil within the proposed buildings footprint were tested for watersoluble sulfate during the investigation and had a soluble sulfate contents of 20 and 50 ppm that are less than 0.1% by weight (1000 ppm), indicating negligible sulfate exposure. Therefore, no cement type restriction/concrete class restriction is necessary per ACI Table 19.3.2.1 for the consideration of soluble sulfate exposure, as well as no soil mitigation necessary for the site.

The minimum amount of chloride ions in the soil environment that are corrosive to steel, either in the form of reinforcement protected by concrete cover or plain steel substructures (such as steel pipes or piles) is 500 ppm per California Test 532. Soil corrosivity to ferrous metals can be estimated by the soil's pH level, electrical resistivity, and chloride content (County of Los Angeles, 2013). In general, soils are considered corrosive when the minimum resistivity is less than 1,000 ohm-centimeters. Soil with a chloride content of 500 ppm or more is considered corrosive.

As a screening for potentially corrosive soil, samples of the subsurface soil within the buildings sites were tested to determine minimum resistivity, chloride content, and pH level. The chloride content of the samples was 30 ppm and 40 ppm. The measured resistivity of tested samples was 2,940 and 2,970 ohm-cm. The pH values of the samples were 8.19 and 8.87.

Based on these results, the on-site soil is generally considered to be highly corrosive towards buried ferrous metals. This information should be provided to the underground utility subcontractors. Consideration should be given to retaining a corrosion consultant to obtain recommendations for the protection of metal components embedded in the site soil. Further interpretation of the corrosivity test results (resistivity value, pH and other test results and data), and providing corrosion design and construction recommendations for foundation and ferrous metals, are the purview of corrosion specialists/consultants.

The Geotechnical and Soil Investigation Report (UHIG, 2015) for the nearby project (Instructional Building #2) reported the following substantially conforming corrosion suite results as listed in Table 1.

Boring (Heider	Sample Depth	Sulfate	Chloride	Resistivity	рН
Inspection 2015)	(feet)	(mg/kg)	(mg/kg)	(ohm-cm)	
B-2	0-5	36	<10	2,700	7.3

Table 1 – Corrosion Results (UHIG, 2015)

2.2.3 Excavatability

Based on our investigation findings, subsurface soils within the anticipated maximum depth of excavation are expected to be readily excavatable by conventional heavy earthmoving equipment in good condition.

2.3 Groundwater

Groundwater was encountered in our soil borings B-4 at a depth of approximately 44 feet below the existing ground surface and in B-10 at a depth of approximately 52 feet below existing ground surface. Groundwater was encountered in Borings B-1 during the UHIG investigation (2018) for the Student Building at the depth of about 46 feet below ground surface. The depths of groundwater encountered in the previous borings, as well as estimated from the CPTs, ranged from about 46 to 48.5 feet below existing ground surface.

According to the California Geological Survey (CGS, 1998) seismic hazard zone report for the South Gate quadrangle, historically shallowest groundwater level is estimated to be on the order of 8 feet below existing grade. According to the California Department of Water Resources (DWR), available groundwater level data for Well 338872N1182432W001, the nearest well located approximately 2 miles northwest of the project site, a single measurement made on September 14, 1995 indicated the groundwater on that date to be at 122.45 feet below the existing local ground surface, corresponding to El. -32.5 feet (mean sea level datum).

Groundwater levels generally fluctuate between different locations, years, and seasons. Therefore, variations from our observations may occur in the future; historically, these appear to be on the order of a few feet.

3. FAULTING, SEISMICITY AND SEISMIC HAZARDS

3.1 Faulting and Primary Seismic Hazards

Our review of available in-house literature indicates that there are no known active or potentially active faults that traverse the site, and the site is not located within an Alquist-Priolo Earthquake Fault Zone, although such faults are in general proximity to the subject site (Hart and Bryant, 1999). The nearest mapped Alquist-Priolo Earthquake Fault Zone is the Newport- Inglewood Fault Zone, approximately 1.65 miles southwest of the site. In addition to this surface fault zone, two buried thrust faults, the Lower Elysian Park and Compton, are inferred to be located about 2.5 miles north and 8 miles south, respectively, from the site (Shaw, et al., 2002; Bilodeau, et. al., 2007).

The principal seismic hazard that could affect the site is ground shaking resulting from an earthquake occurring along nearby several major active or potentially active faults in southern California as shown in Figure 4 (Regional Fault Map). The known regional active and potentially active faults that could produce the most significant ground shaking and closer to the site include those faults listed (in order of increasing distance from the site) in Table 2.

Fault Name	Approximate Distance to Site (miles) ⁽¹⁾	Maximum Credible Earthquake (MCE) Magnitude ⁽²⁾	
Newport-Inglewood	2	7.1	
Lower Elysian Park Thrust	2.5 ⁽³⁾	6.7	
Compton Thrust	8(3)	6.8	
Puente Hills Blind Thrust	7 ⁽³⁾	7.1	
Palos Verdes	9	7.3	
Upper Elysian Park Thrust	10 ⁽³⁾	6.4	
Whittier	13	6.8	
Hollywood	16	6.4	
Raymond	17	6.5	
Verdugo	17	6.9	
Santa Monica	18	6.6	
Malibu Coast	21	6.7	
Sierra Madre	22	7.2	
Newport-Inglewood (offshore)	26	7.1	
San Fernando	28	6.7	
Anacapa-Dume	29	7.5	
Chino-Central Avenue	29	6.7	
Northridge	29	7.0	
San Gabriel	31	7.2	
Santa Susana	34	6.7	
Elsinore (Glen Ivey)	36	6.8	
Simi-Santa Rosa	40	7.0	
San Andreas (Mojave)	44	7.4	
Oak Ridge	48	7.1	
San Clemente	50	7.25 ⁽⁴⁾	
San Cayetano	50	7.0	
North Frontal Thrust (Western)	63	7.2	
Pinto Mountain	86	7.2	

Table 2 – Characteristics and Estimated Earthquakes for Regional Faults

⁽¹⁾ Fault distances estimated from measurements using the Fault Activity Map of California by C.W. Jennings and W.A. Bryant, California Geological Survey, Geologic Data Map No. 6, 2010.

⁽²⁾ Maximum moment magnitude calculated from relationships (rupture area) derived from Wells and Coppersmith (1994; values listed in Appendix A of Cao, T., Bryant, W.A., Rowshandel, B., Branum, D., and Wills, C.J., 2003, The revised 2002 California probabilistic seismic hazard maps, June 2003: California Geological Survey, 12 p., Appendix A.

(3) Fault distances estimated from measurements using Puente Hills Blind-Thrust System, Los Angeles, California by Shaw and others (2002): Bulletin of the Seismological Society of America, vol. 92, no. 8, pp. 2946-2960 and Bilodeau, W.L., Bilodeau, S.W., Gath, E.M. Oborne, M., and Proctor, R.J., 2007, Geology of Los Angeles, California, United States of America: Environmental & Engineering Geoscience, Vol. XIII, No. 2, May 2007, pp. 99–160.

⁽⁴⁾ Legg, M.R., Luyendyk, B.P., Mammerickx, J., and Tyce, R.C., 1989, Sea Beam Survey of an Active Strike-Slip Fault: The San Clemente Fault in the California Continental Borderland: Journal of Geophysical Research, v. 94, pp. 1727-1744.

3.1.1 Regional Seismicity

Evaluation of the historic seismicity related to the New Instructional Building #2 site was performed to show the significant past earthquakes. Figure 5 (Regional Seismicity Map) and the associated table show the recent regional seismicity with respect to the site. Significant past earthquakes from 1900 to 2018 with magnitudes 5 or greater were estimated using the USGS Earthquake database. This historical seismicity evaluation was performed within the 100-kilometer radius search from the project site, and the seismic events are listed in Appendix VII.

The chance of earthquake damage in Compton is near the California average and is much higher than the national average due to active earthquake faults in the region. Based on the online reports at the http://www.city-data.com, it appears no property damage and human losses were reported in the City of Compton area during the previous historic earthquakes. Summary of the major earthquakes and reported damages at the epicenter are summarized below:

- On 7/21/1952 at 11:52:14, a magnitude 7.7 (7.7 UK, Class: Major, Intensity: VIII XII) earthquake occurred 88.2 miles away from the city center, causing \$50,000,000 total damage on 6/28/1992 at 11:57:34, a magnitude 7.6 (6.2 MB, 7.6 MS, 7.3 MW, Depth: 0.7 mi) earthquake occurred 99.1 miles away from Compton center, causing 3 deaths (1 shaking death, 2 other deaths) and 400 injuries, causing \$100,000,000 total damage and \$40,000,000 insured losses.
- On 10/16/1999 at 09:46:44, a magnitude 7.4 (6.3 MB, 7.4 MS, 7.2 MW, 7.3 ML) earthquake occurred 111.0 miles away from the city center.
- On 11/4/1927 at 13:51:53, a magnitude 7.5 (7.5 UK) earthquake occurred 174.9 miles away from the city center.
- On 1/17/1994 at 12:30:55, a magnitude 6.8 (6.4 MB, 6.8 MS, 6.7 MW, Depth: 11.4 mi, Class: Strong, Intensity: VII - IX) earthquake occurred 26.9 miles away from Compton center, causing 60 deaths (60 shaking deaths) and 7,000 injuries.
- On 4/21/1918 at 22:32:30, a magnitude 6.8 (6.8 UK) earthquake occurred 45.5 miles away from the city center.
 - ** Magnitude types: body-wave magnitude (MB), local magnitude (ML), surface-wave magnitude (MS), moment magnitude (MW).

3.2 Secondary Seismic Hazards

Secondary seismic hazards for this site, generally associated with severe ground shaking, include liquefaction, seismic settlement, landslide, tsunamis, and seiches.

3.2.1 Liquefaction

Liquefaction is the loss of soil strength or stiffness due to a buildup of pore-water pressure during severe ground shaking. Liquefaction is associated primarily with loose (low density), saturated,

fine to medium-grained cohesionless soil. As the shaking action of an earthquake progresses, the soil grains are rearranged and the soil densifies within a short period of time. Rapid densification of the soil results in a buildup of pore-water pressure. When the pore-water pressure approaches the total overburden pressure, the soil reduces greatly in strength and temporarily behaves similarly to a fluid.

The site is mapped within an area shown as potentially susceptible to liquefaction on the California Geological Survey (CGS, 2016) seismic hazard zones for the South Gate Quadrangle as shown on Figure 6.

A site-specific liquefaction analysis was performed in accordance with the method of Boulanger and Idriss (2014) using LiqSVs 2.0.2.1 computer program developed by GEOLOGISMIKI Software. Seismically induced settlement analyses were performed based on the sub-surface conditions encountered in the deep borings B-4 and B-10 and peak ground acceleration values PGA corresponding to adjusted Peak Ground Acceleration PGAM. For this analysis, we considered a historic high groundwater level at eight feet below ground surface as indicated on the CGS Seismic Hazards Report and considered depth reduction factor. The predominant earthquake magnitude was obtained from the USGS Interactive Deaggregation website for a 2% probability of exceedence in 50 years (2475 return period) hazard. The seismic parameters, peak ground acceleration of 0.802g and magnitude of 7.3, were used for the liquefaction analysis.

Based on our calculations, potential for liquefaction at the site to occur within various layers of sandy silt and silty sand occurring below 8 feet (maximum historic groundwater table); therefore, the liquefaction susceptibility of the site is very high.

3.2.2 Seismically Induced Settlement

Seismically induced settlement consists of dry dynamic settlement (above groundwater) and liquefaction induced settlement (below groundwater). These settlements occur within silty sand and sandy silt soils due to reduction in volume during and shortly after an earthquake event.

Due to the presence of loose and soft layers of silty sand and sandy silt, high seismic settlement was anticipated. For the on-site (untreated) soil the maximum potential total seismic settlement at the site has been estimated to be on the order of about 10 inches (considering the historically highest groundwater table at the depth of about 8 feet, Mw=7.3, peak ground acceleration of 0.802g and using depth reduction factor). This potential settlement is generally due to liquefaction settlement.

Due to the high seismic settlement, in the following sections we recommend soil mitigation and treatment to reduce the seismic settlement.

3.2.3 Earthquake-Induced Lateral Displacement

In general, relatively severe and shallow liquefaction could cause lateral ground displacements. Since no vertical free face or sloping ground is close to the site, the potential for lateral displacement is considered low.

3.2.4 Surface Manifestations of Liquefaction

Due to the high seismic settlement, there is a potential for surface manifestation of liquefaction of on-site soil that will be mitigated by the recommended soil treatment methods.

3.2.5 Seismically Induced Landslide

There are no significant slopes that exist near the site. As the site is relatively flat and no slopes are proposed, the possibility for earthquake-induced landslides is considered negligible.

3.2.6 Hydro-Collapsible Soils

Collapsible soils are fine sandy and silty soils that have been laid down by the action of flowing water, usually in alluvial fan deposits. Terrace deposits and fluvial deposits can also contain collapsible soil deposits. The soil particles are usually bound together with a mineral precipitate. The loose structure is maintained in the soil until a load is imposed on the soil and water is introduced. The water breaks down the inter-particle bonds, and the newly imposed loading densifies the soil.

The Geotechnical Engineering and Geologic Hazards Study Report (UHIG, 2015) for the nearby building project (Instructional Building #1) reported potential hydro-collapsible soils on site. To evaluate the potential of hydro-collapse of the soil layers versus depth laboratory collapse tests performed on the on-site soil samples collected from B-8 at a depth of about 6 feet and B-11 at a depth of about 11 feet. For the tested samples, the potential of collapse found to be negligible at an applied overburden pressure of 2,200 pounds per square foot (psf).

3.2.7 Other Hazards

Flood hazards generally consist of shallow sheet flooding caused by surface water runoff during large rain storms. According to the Federal Emergency Management Agency Flood Insurance Map (FIRM, 2008), the site is within a zone designated as "Other Flood Areas-Zone X: Areas of Reduced Flood Risk due to Levee."

Subsidence of the land surface, as a result of the activities of man, has been occurring in California for many years. Subsidence can be divided, on the basis of causative mechanisms, into four types: groundwater withdrawal subsidence, hydrocompaction subsidence, oil and gas withdrawal subsidence, and peat oxidation subsidence (CDMG, 1973). According to CDMG (1973), the site lies either within, or near, an area potential land subsidence due to withdrawal of oil and gas from nearby oil and gas fields.

Tsunamis, often incorrectly called tidal waves, are long period waves of water usually caused by underwater seismic disturbances, volcanic eruptions, or submerged landslides. The site is not within a potential tsunamis hazard zone according to the Tsunami Inundation Maps for the Long Beach and Venice Quadrangles (California Emergency Management Agency, 2009). Tsunamis are not a potential hazard at the site.

A seiche is an oscillation of a body of water in an enclosed or semi-enclosed basin that varies in period. Seiches are often caused by tidal currents, landslides, earthquakes, and wind. There are no bodies of water adjacent or near to the site. A seiche is not a potential inundation hazard.

Earthquake-induced flooding is flooding caused by failure of dams or other water-retaining structures as a result of earthquakes. The site is mapped within an area shown as Potential Dam Inundation Areas on the Los Angeles County General Plan Dam and Reservoir Inundation Routes Map (General Plan 2035 Figure 9.4). Since the site is located in the inundation area of the Whittier Narrows Dam (11 miles upstream from Compton), the Hansen Dam (30 miles upstream from Compton), and the Sepulveda Dam (29 miles upstream from Compton), the potential of earthquake-induced flooding exists at the site, if one of these dams fails during a strong earthquake.

4. CONCLUSIONS AND RECOMMENDATIONS

Based on our geotechnical investigation findings, it is our opinion that the site is suitable for the proposed buildings and associated improvements provided the recommendations in this report are taken into account during design and construction of the project. We did not encounter any geotechnical constraints, geological hazards within the subject site that cannot be mitigated by proper planning, design, and sound construction practices.

The most significant design considerations for this project are liquefaction, seismic settlement, and seismic shaking. Presented herein are our recommendations for site grading, seismic parameters, foundation design parameters, lateral earth pressures, and construction considerations for the project.

4.1 Earthwork

All earthworks should be performed in accordance with the latest edition of the Standard Specifications for Public Works Construction (Greenbook), unless specifically revised or amended below or by future review of project plans.

All site grading operations should conform to the local building and safety codes and rules and regulations of the governing governmental agencies having jurisdiction over the subject construction.

Earthwork is expected to consist of excavation/overexcavation of loose, soft and/or disturbed soils and placement of fill soils for the proposed site improvements. Recommendations for site earthwork are provided in the following paragraphs.

4.1.1 Site Preparation

The site should be cleared of all debris and unsuitable materials. All undocumented fill soils should be removed from the site. Prior to construction, it will be necessary to demolish the existing buildings including utilities (if needed), remove all existing concrete slabs within the limits of planned grading. Structure removal should include foundations and flatwork. Concrete fragments

and debris from the demolition operation should be disposed off site. The existing near surface soils that are disturbed during demolition of the existing improvements should be recompacted or removed as needed to make it firm stable subgrade soils. The need for and extent of removal of soils disturbed by site demolition should be determined by the Geotechnical Engineer at the time of grading.

Any existing vegetation and organic contaminated soil should be stripped and disposed off site. Removal of trees and shrubs should also include root balls and attendant root system.

Any existing utility lines should be removed and/or rerouted if they interfere with the proposed construction. The cavities resulting from removal of utility lines and any buried obstructions should be properly backfilled and compacted as recommended in Sections 4.1.3 and 4.11 of this report. In addition, if any uncontrolled artificial fill is encountered, it should be removed.

Excavations located along property lines and/or adjacent to existing structures (e.g., buildings, walls, fences, etc.) should not be permitted within 2 feet of existing foundations.

4.1.2 Excavation/Overexcavation in Building Pad Area and the Exterior Flatwork Area for Slab-On-Grade

Existing fill soils within the proposed buildings pads should be over-excavated to a minimum depth of 3½ feet below existing grade or to a sufficient depth to remove all of the undocumented fill materials in their entirety from within the proposed buildings pads areas. Deeper undocumented fill layers are anticipated to be present at the site and the depth and extent of the fill should be verified during the grading operation.

In order to remove the upper compressible soil and undocumented fill and to reduce the potential for adverse differential settlement of the proposed structures, the underlying subgrade soil must be prepared in such a manner that a uniform response to the applied loads is achieved. For the proposed buildings, we recommend that a minimum of 4 feet of engineered fill be provided under the buildings pads at a minimum overexcavation depth of 5 feet from existing grade, whichever provides the deeper overexcavation The fill shall be placed in loose lifts of 6 to 8 inches in thickness, moisture-conditioned to above the optimum moisture content as needed (generally about 2% above optimum) and compacted to a minimum of 92% relative compaction (per ASTM D1557).

The excavated removal bottoms shall be evaluated by a geotechnical engineer to confirm competent native soil materials are encountered. In general, native soils with at least 85% relative compaction of maximum dry density (ASTM D1557) is considered suitable. If unsuitable soil conditions are encountered deeper excavation may be recommended. The overexcavation should extend below any underground obstructions to be removed. The overexcavation and recompaction should extend a minimum of 5 feet laterally from the edges of the footings, where feasible. The soil below exterior slabs-on-grade (non-vehicular) should be overexcavated and recompacted a minimum of 24 inches below the bottom of the proposed slab or 24 inches below the existing ground surface, whichever is deeper.

Areas outside the overexcavation limits of the proposed buildings planned for asphalt or concrete pavement and flatwork and areas to receive fill should be overexcavated to a minimum depth of 24 inches below the existing ground surface or 24 inches below the proposed finish grade, whichever is deeper.

Local conditions may require that deeper overexcavation be performed. If encountered, such areas should be evaluated by the geotechnical consultant of record during grading.

In addition to the above recommendations, all uncontrolled fill, if encountered, should be removed from structural areas prior to fill placement.

After completion of the overexcavation, and prior to fill placement, the exposed surfaces should be scarified to a minimum depth of 8 inches, moisture conditioned to about 2% above optimum, and recompacted to a minimum 90% relative compaction.

4.1.3 Fill Placement and Compaction

Following subgrade approval by the Geotechnical Engineer, the bottom of the removal excavation should be scarified to a depth of 8 inches, moisture conditioned as needed and recompacted to 90% relative compaction as determined by ASTM D1557. However, if the subgrade is dense and consists of undisturbed alluvium the scarification should not be performed, and measures should be taken to prevent subgrade disturbance.

Any fill soil should be placed in loose lifts of 6 to 8 inches in thickness, moisture-conditioned to above the optimum moisture content as needed (generally about 2% above optimum) and compacted to a minimum of 92% relative compaction (per ASTM D1557).

4.1.4 Fill Materials

On-site soils that are free of organics, debris and oversize particles (e.g., cobbles, rubble, etc. that are greater than 3 inches in the largest dimension) and an expansion index less than 50 can be reused as fill as approved by the Geotechnical Engineer.

Import materials, if needed, should contain sufficient fines (binder material) so as to be resulted in a stable subgrade when compacted. The imported materials should have an expansion index less than 20 and should be free of organic materials, corrosion impacts, debris, and cobbles larger than 2 inches with no more than 35% passing the #200 sieve. A bulk sample of potential import material, weighing at least 35 pounds, should be submitted to the Geotechnical Consultant at least 72 hours before fill operations. Proposed import materials should be tested for corrosivity, should be environmentally cleared from contamination and should be approved by the Geotechnical Consultant prior to being imported on site (some more tests such as: R-Value, may be required).

If base materials are imported to be placed instead of soil backfill, these may be either crushed aggregate base or crushed miscellaneous base in conformance with the Sections 200-2.2 and 200-2.4 of the Standard Specifications for Public Works Construction (Green Book), 2018 Edition, respectively.

Soil engineer should be notified at least 72 hours prior to borrow materials in order to sample and test materials from proposed borrow sites.

4.2 CBC Seismic Design Parameters

In order to provide the preliminary seismic design parameters, based on the field data, the subsurface conditions, geology of the site and to the best of our knowledge and understanding, we have assumed that site's soil profile may be characterized within the category of 'Stiff Soil Profile' with Site Class D according to Section 1613A.2.2 of the 2019 CBC accordance with Chapter 20 of ASCE7-16.

Corresponding CBC seismic design parameters for this soil profile and the site location (Latitude: 33.876960 °N; Longitude: -118.211102 °W) are determined based on general ground motion analysis in accordance with Section 1613A.2 of the 2019 CBC. These parameters are summarized in Table 3. Proposed development at the site should be designed for the seismic parameters presented in Table 3.

Categorization/Coefficient	Design Value
Site Class	D
Risk Category	III
Mapped MCE _R Spectral Acceleration for Short (0.2 Second) Period, S_S	1.694
Mapped MCE _R Spectral Acceleration for a 1-Second Period, S ₁	0.606
Short Period (0.2 Second) Site Coefficient, Fa	1.0
Long Period (1 Second) Site Coefficient, F_v	1.7
Adjusted Spectral Response Acceleration at 0.2-Second Period, S _{MS}	1.694
Adjusted Spectral Response Acceleration at 1-Second Period, S _{M1}	1.031
Design (5% damped) Spectral Response Acceleration for Short (0.2 Second) Period, SDS	1.129
Design (5% damped) Spectral Response Acceleration for a 1- Second Period, S _{D1}	0.687
Peak ground acceleration value, PGA _M	0.802
Seismic Design Category	D

Table 3 – California Building Code Seismic Design Parameters

A site-specific ground motion analysis was performed as part of our investigation. As part of the site-specific analysis, base ground motions were evaluated in conjunction with both a Probabilistic Seismic Hazard Analysis (PSHA) and a Deterministic Seismic Hazard Analysis (DSHA) to characterize earthquake ground shaking that may occur at the site during future seismic events.

The PSHA is based on an assessment of the recurrence of earthquakes on potential seismic sources in the region and on ground motion prediction models of different seismic sources in the region. The United States Geological Survey (USGS) Unified Hazard Tool (USGS, 2021a) was used to develop seismic hazard curves for various periods and the USGS Risk-Targeted Ground

Motion Calculator (USGS, 2021b) was used to analyze ground motions for each corresponding period. Maximum directional scale factors were applied to the results to develop the probabilistic ground motion response spectrum specific to this site.

The DSHA is represented by the 84th percentile of the spectral accelerations for different periods. The logarithmic means and standard deviations of various periods were calculated using the USGS Response Spectra Tool (USGS, 2021c) with ground motion model(s) "Combined: WUS 2018 (5.0, deep basins)." This combined model utilizes attenuation relationships of Abrahamsonet al (2014) NGA West 2, Boore-et al (2014) NGA West 2, Campbell & Bozorgnia (2014) NGA West 2, and Chiou & Youngs (2014) NGA West 2.

ASCE 7-16 indicates that the deterministic ground motions shall be calculated for the characteristic earthquakes on all known active faults within the region. The largest such acceleration for each period shall be used to create the deterministic (84th percentile) spectrum. The input parameters for DSHA were obtained from the USGS Shakemap Scenarios.

The site-specific Risk-Targeted Maximum Considered Earthquake (MCE_R) was taken as the lesser of the spectral response accelerations determined from the PSHA and DSHA for each period. The site-specific design response spectral accelerations were compared to the design response spectrum from ASCE 7-16, Section 11.4.6 (SEAOC, 2021) to verify that the values obtained from the site-specific analysis are not less than 80% of the accelerations obtained from Section 11.4.6. The site coefficients and maximum considered earthquake spectral response acceleration parameters are presented in Table 4.

Site Coordinates					
Latitude: 33.876960 Longitude: -118.211102					
Site Coefficients and Spectral Response Accele	eration Parameters	Value			
Site Class		D			
Risk Category		III			
Site Amplification Factor at 0.2 Second, Fa		1.000			
Site Amplification Factor at 1.0 Second, F_v	2.500				
Spectral Response Acceleration at Short Period, Ss	1.882g				
Spectral Response Acceleration at 1-Second Period, S1	0.656g				
Spectral Response Acceleration at Short Period, Adjusted	1.882g				
Spectral Response Acceleration at 1-Second Period, Adju	1.639g				
Design Spectral Acceleration at Short Period, S _{DS}	1.255g				
Design Spectral Acceleration at 1-Second Period, S _{D1}	1.093g				
Site Specific Peak Ground Acceleration	0.774g				

The proposed development shall be designed based on the seismic parameters provided in Tables 3 and 4, whichever is more conservative.

4.3 Soil Treatment

The proposed PE building and the associate structural elements shall be supported on foundations designed to accommodate the static and seismic total and differential settlements without undue distress occurring to the building. As discussed in previous sections, the project site is susceptible to potential static settlement due to column loads and seismic settlements (liquefaction and dry settlements) induced by the design earthquake.

The seismic and static settlements can be reduced or controlled by soil mitigation methods using deep soil mixing method under the proposed foundation systems below the columns and walls. The preliminary recommendations provided in this report shall be verified and confirmed during project construction and during the performing of the deep soil mixing columns, including proper tests in the field and Lab.

4.3.1 Deep Soil Mixing, Preliminary Recommendations

Deep soil mixing is an in-situ ground improvement technique that enhances the characteristics of weak soils by mechanically mixing them with a cementitious binder. The action of mixing materials such as cement with soil causes the properties of the soil to become more like soft rock.

Generally, the upper 37 feet of the soil can be mitigated by deep soil mixing. The diameter of each column could be about 6 feet with about 6 inches of overlap with about 27 ½ feet of square grids. A minimum replacement ratio on the order of about 30% is our preliminary recommendation.

We strongly recommend at least the foundation system (e.g., under the columns and under the structural bearing walls,...), be supported by the deep soil mixing columns.

It should be noted that in the event of a major local earthquake, some damages to the project will occur and repairs to the damaged parts and portions should be anticipated; however, the soil mitigation and treatment for the entire site of the project will be safer.

4.3.2 Settlement of the Treated soil

Based on our analyses performed on borings B-4 and B-10 (considering the historically highest groundwater table at the depth of about 8 feet, Mw=7.3, $PGA_M = 0.802$ and using depth reduction factor, Cetin. et. al.), the total seismic settlement for the treated soil is estimated to be on the order of about $2\frac{1}{2}$ inches or less. The differential seismic settlement can be considered to be on the order of about $1\frac{1}{4}$ inches over a horizontal distance of 40 feet.

The total static settlement of the treated soil under the structural loads has been estimated to be on the order of about ³/₄ inch with the differential static settlement of about ¹/₂ inch over a horizontal distance of 40 feet.

4.3.3 Continuous Foundation System Supported by Deep Soil Mixing (DSM) Columns

We recommend using a continuous foundation system supported on the treated soil: deep soil mixing columns We assumed that the continuous foundation system would be at least 2 to 2½ feet thick The continuous foundation system shall be thick enough to limit the total and differential

static and seismic settlements within the required threshold indicated in this report. For the continuous foundation system supported by deep soil mixing columns, we recommend an allowable net bearing pressure of 6,000 psf for gravity loads: dead and live load. During transient loads such as wind or earthquake, this bearing pressure can be increase by 33% up to 8,000 psf.

A subgrade modulus of 125 pounds per cubic inch (pci) can be applied to the areas covered with deep soil mixing properly. No need to reduce if the area is properly covered by deep soil mixing.

4.4 Minor Footings

Minor footings may be required for low height exterior landscape walls (4 feet or less in height), or other small ancillary structures. These footings should be supported on at least 3 feet of new engineered fill and should be embedded at least 36 inches below the existing grade. A vertical bearing pressure of 2,000 psf may be used for these footings. No undocumented fill is allowed under the footings.

Adjacent utilities or foundations should be avoided within the zone of an imaginary plane extending downward at a 1½H:1V: 1V (horizontal: vertical) inclination from the bottom edge of the foundation.

4.5 Resistance to Lateral Loads

Resistance to lateral loads can be provided by friction acting at the base of the concrete and by passive earth pressure. A coefficient of friction of 0.35 may be assumed for base friction. An allowable passive lateral earth pressure of 220 psf per foot of depth up to a maximum of 2,200 psf may be used for sides of the foundation poured against properly compacted fill. This allowable passive pressure is applicable for level ground conditions only (slope equal to or flatter than 5H:1V).

The above lateral bearing values may be increased by 33% for short duration of loading, including the effects of wind or seismic forces.

4.6 Slab-On-Grade

Slabs-on-grade should be placed on properly prepared subgrade soil as described in the earthwork section of this report (Section 4.1 and the pertinent subsections). Prior to concrete placement, the exposed subgrade should be scarified to at least 8 inches, moisture-conditioned to moisture content of about 2% above optimum and compacted to a minimum of 90% relative compaction (per ASTM D1557). The subgrade should not be allowed to dry prior to concrete placement.

The structural engineer should design the actual slab thickness and reinforcement based on structural load requirements. We recommend a minimum slab thickness of 4 inches. Frequent continuous joints should be provided to help control slab cracking.

Care should be taken to avoid slab curling if slabs are poured in hot weather. Slabs should be designed and constructed as promulgated by the Portland Cement Association. Prior to the slab pour, all utility trenches should be properly backfilled and compacted.

In areas where a moisture-sensitive floor covering (such as vinyl, tile, or carpet) is used, a moisture/vapor barrier should be placed per our recommendation in Section 4.7.

4.5.1 Exterior Concrete

To reduce the potential for excessive cracking of concrete flatwork (such as walkways, etc.), concrete should be a minimum of 4 inches thick and provided with construction or weakened plane joints at frequent intervals.

4.7 Moisture/Vapor Mitigation for Concrete Floor Slab-on-Grade

In order to reduce the potential for moisture/water vapor migration up through the slab and possibly affecting floor covering, a moisture/vapor retarder is recommended under concrete floor slab-on-grade. The moisture barrier should be properly installed, lapped and sealed in accordance with the manufacturer's specifications. Punctures and rips should be repaired prior to placement of sand.

Atlas recommends a qualified waterproofing consultant be retained in order to recommend a product or method which would provide protection for the concrete slabs-on-grade for your project based on the project needs. Please refer to the latest version of the "ACI Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials" for your design.

The moisture/water vapor protection for concrete slab-on-grade should be selected based on cost and construction considerations, and considering potential future problems resulting from improper and uncontrolled landscape irrigation practices. Regardless of the moisture/water vapor retarder option selected, it should be emphasized that proper control of irrigation and landscape water adjacent to the structure is of paramount importance.

4.8 **Temporary Excavations**

All temporary excavations, including utility trenches, pool and retaining wall excavations and other excavations should be performed in accordance with project plans, specifications and all Occupational Safety and Health Administration (OSHA) requirements.

No surcharge loads should be permitted within a horizontal distance equal to the height of cut or 5 feet, whichever is greater from the top of the slope, unless the cut is shored appropriately. Excavations that extend below an imaginary plane inclined at 45 degrees below the edge of any adjacent existing site foundation should be properly shored to maintain support of the adjacent structures.

Excavations located along property lines and adjacent to existing structures (i.e., buildings, walls, fences, etc.) should not be permitted within 2 feet from existing foundations.

4.9 Minor Retaining Wall

Minor retaining walls in the range of about $1\frac{1}{2}$ to 4 feet in height may be associated with the improvements. The pressure behind retaining walls depends primarily on the allowable wall movement, wall inclination, type of backfill materials, backfill slopes, surcharge, and drainage. Determination of whether the active or at-rest condition is appropriate for design will depend on the flexibility of the walls. Walls that are free to rotate at least 0.002 radians at the top (deflection at the top of the wall of at least 0.002 x H, where H is the unbalanced wall height) can be designed for active conditions. The recommended active and at-rest pressures for the site soil backfill are presented in Table 5.

Wall Movement	Backfill Condition	Equivalent Fluid Pressure (on-site soil) (pcf)
Free to Deflect	Level	40
Restrained	Level	62

Table 5 – Earth Pressures for Retaining Walls

The above lateral earth pressures do not include the effects of surcharge (e.g., traffic, footings), hydrostatic pressure or compaction. Any surcharge (live, including traffic, or dead load) located within a 1:1 plane drawn upward from the base of the excavation should be added to the lateral earth pressures. The lateral pressure addition of a surcharge load located immediately behind walls may be calculated by multiplying the surcharge by 0.33 for cantilevered walls and 0.5 for restrained walls. For vehicular surcharge adjacent to driveways or parking areas a uniform lateral pressure of 100 pounds per square foot, acting as a result of an assumed 300 pounds per square foot traffic surcharge, should be used.

The equivalent fluid pressures provided in Table 5 are based on a full drainage system behind the wall. A drainage system should be provided behind the walls to reduce the potential for development of hydrostatic pressure.

Walls should be properly drained and waterproofed. Except for the upper 2 feet, the backfill immediately behind retaining walls (minimum horizontal distance of 12 inches) should consist of free-draining, ³/₄-inch crushed rock wrapped with filter fabric. A 4-inch diameter perforated PVC pipe with perforations placed downward at the bottom of the crushed rock backfill, leading to a suitable gravity outlet, should be installed. If a drainage system is not installed, the walls should be designed to resist the hydrostatic pressure in addition to the earth pressure.

The wall footings should be underlain by 3 feet of engineered fill. The footing embedment should be at least 3 feet below the lowest adjacent grade. The maximum allowable bearing pressure recommended is 2,000 psf.

In the event of a large earthquake, the lateral earth pressure on a cantilever wall may be higher. We suggest using a dynamic earth pressure increment of 25 psf per foot for cantilever yielding walls with level backfill, assuming the wall will not exceed 6 feet in height. The pressure should

be taken as an inverted triangular distribution with the zero-pressure point at the toe of the wall and 25H (psf where H in feet) at the top of the wall, where H is the wall height in feet. The point of application of the dynamic thrust may be taken at 0.6H above the toe of the wall. When combining both static and seismic lateral earth pressures, a decreased factor of safety may be used in design of retaining walls when checking for sliding and overturning stability. The Structural Engineer should determine if a seismic increment of lateral earth pressure is applicable based on wall heights and allowable wall movements.

4.10 Surface Drainage

All pad and roof drainage should be collected and transferred to an approved area in non-erosive drainage devices. Drainage should not be allowed to descend any slope in a concentrated manner, pond on the pad or against any foundation.

The CBC recommends a minimum 5% slope away from the perpendicular face of the building wall for a minimum horizontal distance of 10 feet (where space permits). We recommend a minimum 5% slope away from the building foundations for a horizontal distance of 3 feet be established for any landscape areas immediately adjacent to the building foundations. In addition, we recommend a minimum 2% slope away from the building foundations be established for any impervious surfaces immediately adjacent to the building foundations for a minimum horizontal distance of 10 feet (where space permits). Lastly, we recommend the installation of roof gutters and downspouts which deposit water into a buried drain system be installed instead of discharging surface water into planter areas adjacent to structures.

It is the responsibility of the contractor and ultimately the developer and/or property owner to ensure that all drainage devices are installed and maintained in accordance with the approved plans, our recommendations, and the requirements of all applicable municipal agencies. This includes installation and maintenance of all subdrain outlets and surface drainage devices. It is recommended that watering be limited or stopped altogether during the rainy season when little irrigation is required. Over-saturation of the ground can cause major subsurface damage. Maintaining a proper drainage system will minimize the hydro-collapse potential of sub-soils.

Drainage swales should not be constructed within 5 feet of building structure. Irrigation adjacent to buildings should be avoided wherever possible.

As an option, sealed-bottom planter boxes and/or drought resistant vegetation may be used within 5 feet of buildings.

4.11 Trench Backfill

Utility trenches should be backfilled with compacted fill in accordance with Sections 306-12 of the Standard Specifications for Public Works Construction, ("Greenbook"), 2018 Edition.

Utility trenches can be backfilled with on-site soils free of debris, organic and oversized material (maximum size not exceeding 3 inches). However, prior to backfilling utility trenches, pipes should be bedded in and covered with import granular material that has a Sand Equivalent (SE) value

greater than 30. Bedding sands may be placed by mechanical compaction (rolling sheepsfoot wheel attached to backhoe) or by jetting. Native soil backfill over the pipe bedding zone should be placed in thin lifts – loose lift thickness not exceeding 8 inches – moisture conditioned as necessary, and mechanically compacted to a minimum of 90% relative compaction (per ASTM D1557) in paved and any structural areas. For the vehicular area, the upper 12 inches of the backfill material shall be compacted to 95% based on the recommendations provided in this report.

4.12 Preliminary Pavement Section

Below sections provide preliminary design for pavements based on the results of our R-Value tests. The design can be verified during construction with more R-Value tests.

4.12.1 Asphalt Concrete (AC) Pavement

The required pavement structural sections depend on the expected wheel loads, volume of traffic, and subgrade soils. The characteristics of subgrade soils are determined by R-value testing. Based on soil classification and the results of the R-value tests, we assumed two R-values, one for sandy silt and one for silty sand. The R-values should be verified and confirmed with additional tests, if necessary, at the time of construction. The following pavement sections were calculated based on assumed traffic indices of 4, 5, 6 and 7. The project Civil Engineer should determine the traffic index to be used for different areas of the site.

	Assumed R-Value for Sandy Silt = 13		Conservatively Assumed R-Value for Silty Sand = 35	
Traffic Index	Asphalt Thickness (in)	Base Course (CAB) Thickness (in)	Asphalt Thickness (in)	Base Course (CAB) Thickness (in)
4	3.0	4.5	3.0	4.5
5	4.0	6.0	3.5	4.5
6	5.5	7.0	4.5	5.0
7	6.5	8.0	5.0	6.5

Table 6 – Asphalt Pavement Sections

Base course material should consist of Crushed Aggregate Base (CAB) as defined by Section 200-2.2 of the Standard Specifications for Public Works Construction ("Greenbook"). Base course should be compacted to at least 95% of the maximum dry density of that material. Crushed Miscellaneous Base (CMB) may be used only if the supplier can demonstrate that the aggregate does not contain contaminated material.

The subgrade underlying the pavement areas should be overexcavated 18 inches below the proposed base course layer. Prior to fill placement, the subgrade should be scarified to a minimum depth of 8 inches, moisture conditioned within 2% of optimum moisture content, and compacted to at least 90% of the maximum dry density obtained per ASTM D1557. The upper 12 inches of

subgrade should be compacted to 95% relative compaction. The subgrade should be in a "non-pumping" condition at the time of compaction.

Any on-site surficial organic soils within landscaped/turf areas should not be used as subgrade materials. Where feasible, the overexcavation should be laterally extended a minimum of 2 feet beyond the perimeters and edges of parking areas, roadways and curbs. Any abandoned footing and/or underground concrete structure within the work limit should be removed entirely and the excavation should be backfilled to grade.

4.12.2 Portland Cement Concrete Pavement

The grading recommendations for vehicular Portland Cement Concrete (PCC) pavement are generally provided in Section 4.1 (and the pertinent subsections) of this report. Base course material, used in the vehicular pavement sections, should consist of Crushed Aggregate Base (CAB) as defined by Section 200-2.2 of the Standard Specifications for Public Works Construction (Greenbook 2018). The aggregate base course should be compacted to at least 95% of the maximum dry density of that material. Crushed Miscellaneous Base (CMB) may be used only if the supplier can demonstrate that the aggregate does not contain contaminated material.

The recommendations presented herein should be used for design and construction of the slabs and pertaining grading work underlying the vehicular pavement area. A minimum modulus of rupture of 550 pounds per square inch (psi) for concrete has been assumed in designing of the PCC pavement sections; this corresponds to a concrete compressive strength of approximately 4,000 psi at 28 days. A qualified design professional should specify where heavy duty and standard duty slabs are used based on the anticipated type and frequency of traffic. Fire access roads are normally considered heavy duty pavement. The preliminary recommended vehicular PCC pavement sections are provided in Table 7.

Pavement Type	Portland Cement Concrete Thickness (inches)	Base Course (CAB) Thickness (inches)	
Light Duty	6.5	6	
Heavy Duty	7.0	6	

Table 7 – Vehicular PCC Pavement Sections

The above pavement sections can be verified during construction of the projects. These vehicular concrete pavement sections should be increased for bus and very heavy traffic where applicable. The following recommendations should also be incorporated into the design and construction of PCC pavement.

- The pavement sections should be reinforced with No. 3 rebars spaced at 18 inches on centers each way to reduce the potential for shrinkage cracking.
- Joint spacing in feet should not exceed twice the slab thickness in inches, e.g., 12 feet for a 6-inch thick slab. Regardless of slab thickness, joint spacing should not exceed 15 feet.

- Layout joints should form square panels. When this is not practical, rectangular panels can be used if the long dimension is no more than 1.5 times the short one.
- Control joints should have a depth of at least 1/4 the slab thickness, e.g., 1 inch for a 4-inch thick slab.
- Pavement section design assumes that proper maintenance such as sealing and repair of localized distress will be performed on a periodic basis.
- The recommendations for PCC provided in this section should be verified and confirmed if necessary, at the time of construction.
- The upper 12 inches of subgrade should be compacted to at least 95% relative compaction (ASTM D1557)

4.13 General Note for Concrete and Rebar Recommendation

The requirements for concrete and rebar for slabs, concrete flat works, concrete pavements,...presented in this report are preliminary recommendations. The Project Design/Civil/Structural Engineer should provide the final recommendations for structural design of concrete and rebar for foundation system, floor slab, exterior concrete, slab on grade, concrete pavements and, ... in accordance with the latest version of the applicable codes and standards.

4.14 Percolation Test

We performed four percolation tests, two deep borehole tests and two shallow borehole tests to assess storm water infiltration feasibility, in general conformance with the County of Los Angeles testing guidelines.

Based on the County of Los Angeles testing guidelines the raw flow rate for the borehole percolation tests were estimated by calculating the volume of water discharged into the bore hole (cubic feet) in a given amount of time (hr). To find the raw measured infiltration rate, the stabilized flow rate was divided by surface area of the hole test (sum of all wetted areas including the bottom surface area of the boring and sidewalls). The measured stabilized flow rate and raw measured percolation rate are provided in Tables 8 and 9. The values provided in the tables do not included reduction factors for the test procedure (RFt), site variability (RFv) and long-term siltation plugging (RFs) that are considered in order to assess long-term design infiltration rate. The borehole percolation tests were performed using relatively clean water free of particulates, silt etc.

The long-term infiltration rate is the raw measured infiltration rate dividing by a series of reduction factors including test procedure (RFt), site variability (RFv) and long-term siltation plugging and maintenance (RFs). The preliminary recommended reduction factors are presented in Table 10. The reduction factors can be finalized by the designed Engineer. The long-term infiltration rate is the raw measured infiltration rate divided by the total reduction factor (RFt x RFv x RFs).

Test Location	Test Depth (feet)	Test Head (Water Column) (feet)	Total Test Water (gallons)	Stabilized Flow Rate (cf/hr)	Raw Measured Infiltration Rate (ft/hr)
B-11/BP-2	25	19	168.3	3.2	0.08
B-13/BP-3	25	19	162.0	4.3	0.11

Table 8 – Deep Borehole Percolation Rate Test Results

Table 9 – Shallow Borehole Percolation Rate Test Results

Test Location	Test Depth (feet)	Test Head (Water Column) (feet)	Total Test Water (gallons)	Stabilized Flow Rate (cf/hr)	Raw Measured Infiltration Rate (ft/hr)
B-14/BP-1	5	1	7.2	0.4	0.2
BP-4	5	1	16.2	0.9	0.4

Table 10 – Reduction Factors

Reduction Factor	Factor	
Test procedure, boring percolation, RFt	2	
Site variability, number of tests, etc. RFv	2	
Long-term siltation plugging and maintenance, RFs	Assumed 3	
Total Reduction Factor, RF = RFt x RFv x RFs	12	

The results of our percolation tests indicate that the shallow silty SAND layers have more infiltration rate than the deep Silty layer. Based on the results of the percolation tests, the average raw measured infiltration rate is 0.095 ft/hr (1.1 in/hr) for the deep borehole tests and 0.3 ft/hr (3.6 in/hr) for the shallow borehole tests. Considering a reduction factor of 12, we recommended long-term infiltration rate of 0.0079 ft/hr (0.09 in/hr) for the deep borehole tests (Sandy SILT:ML) and 0.0255 ft/hr (0.30 in/hr) for the shallow boreholes (Silty SAND:SM). The recommended infiltration rates can be verified by the designed engineer.

It should be noted that the in-situ field percolation tests performed provide short-term infiltration rates, which apply mainly to the initiation of the infiltration process due to the short time of the test (hours instead of days) and the amount of water used. The small-scale percolation testing cannot model the complexity of the effect of interbedded layers of different soil composition, and our test results should be considered only as index values of infiltration rates. Please note that the results of our percolation/infiltration study are based on our field measurements at the certain depth of the tested boreholes. Other depths and locations generally may have similar, less or higher values for percolation/infiltration rates.

4.15 Construction Observation and Testing

All excavation and grading during construction should be performed under the observation and testing of the geotechnical consultant at the following stages:

- Upon removal of the upper soils to the proposed excavation/overexcavation bottoms
- During preparation of the removal bottoms, any fill placement, and grading for the proposed improvements
- During preparation of the footing subgrades
- When any unusual or unexpected geotechnical conditions are encountered

4.16 Limitations

The conclusions and recommendations in this report are based in part upon data that were obtained from a limited number of soil samples and laboratory test results. Such information is by necessity limited. Subsurface conditions may vary across the site. Therefore, the findings, conclusions, and recommendations presented in this report can be relied upon only if Atlas has the opportunity to observe the subsurface conditions during grading and construction of the project, in order to confirm that our findings are representative for the site.

This report is not authorized for use by and is not to be relied upon by any party except, Compton Community College District, their successors and assignees as the owner of the property. Use of or reliance on this report by any other party is at that party's risk. Unauthorized use of or reliance on this report constitutes an agreement to defend and indemnify Atlas from and against liability, which may arise as a result of such use or reliance.

Geotechnical investigation and relevant engineering evaluations for this project were performed in substantial conformance with the general practices of geotechnical engineering in southern California at the time of this report. No other warranty is expressed or implied.

5. REFERENCES

- American Concrete Institute (ACI), 2005, ACI 318-05, Building Code Requirements for Structural Concrete and Commentary, published in 2005.
- Bedrossian, T.L., Roffers, P.D., Hayhurst, C.A. Lancaster, J.T., and Short, W.R., 2012, Geologic Compilation of Quaternary Surficial Deposits in Southern California: California Geological Survey, Special Report 217 (Revised), Plate 8-Long Beach 30' x 60' Quadrangle, scale 1:100,000, dated July 2010.
- Bilodeau, W.L., Bilodeau, S.W., Gath, E.M., Oborne, M., and Proctor, R.J., 2007, Geology of Los Angeles, California, United States of America: Environmental & Engineering Geoscience, Vol. XIII, No. 2, May 2007, pp. 99–160.
- Boulanger, R.W., and Idriss, I.M., 2006, "Liquefaction susceptibility criteria for silts and clays." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(11), 1413-1426.

- California Department of Water Resources (DWR), 1961, Ground water geology, Appendix A of Planned utilization of the ground water basins of the coastal plain of Los Angeles County: California Department of Water Resources Bull. 104, 181 p.
- California Division of Mines and Geology (CDMG), 1973, Urban Geology Master Plan for California, Bulletin 198, p. 43-48.
- California Emergency Management Agency, California Geological Survey and University of Southern California, 2009, Tsunami Inundation Map for Emergency Planning, Long Beach Quadrangle: from Tsunami Inundation Maps website; http://www.conservation.ca.gov/ cgs/geologic_hazards/Tsunami/Inundation_Maps/LosAngeles/Documents/Tsunami_Inun dation_LongBeach_Quad_LosAngeles.pdf.
- California Emergency Management Agency, California Geological Survey and University of Southern California, 2009, Tsunami Inundation Map for Emergency Planning, Venice Quadrangle: from Tsunami Inundation Maps website; http://www.conservation.ca.gov/cgs /geologic_hazards/Tsunami/Inundation_Maps/LosAngeles/Documents/Tsunami_Inundati on_Venice_Quad_LosAngeles.pdf.
- California Geological Survey, 1998, Seismic Hazard Zone Report for the South Gate 7.5-Minute Quadrangle, Los Angeles County, California: Department of Conservation (formerly Division of Mines and Geology), Seismic Hazard Zone Report 034.
- California Geological Survey, 2005, Earthquake Zones of Required Investigation South Gate 7.5-Minute Quadrangle, Los Angeles County, California, March 25, 1999.
- California Geologic Survey, 2007, Fault-Rupture Hazard Zones in California: Special Publication 42.
- California Geologic Survey, 2010, Geologic Compilation of Quaternary Surficial Deposits In Southern California Onshore Portion Of The Long Beach 30' X 60' Quadrangle; CGS Special Report 217, Plate 8 (July 2010).
- California Geologic Survey, 2013, Checklist for the Review of Engineering Geology and Seismology Reports for California Public Schools, Hospitals, and Essential Services Buildings, October 2013: CGS Note 48.
- California Geological Survey, 2016, Earthquake Zones of Required Investigation, Inglewood 7.5-Minute Quadrangle, Los Angeles County, California, March 25, 1999.
- California Geological Survey, 2016, Earthquake Zones of Required Investigation, South Gate 7.5-Minute Quadrangle, Los Angeles County, California, March 25, 1999.
- California Geological Survey, 2016, Geologic Map of the Long Beach 30' x 60' quadrangle, California: A digital database: California Geological Survey Preliminary Geologic Map, scale 1:100,000.

Cao, T., Bryant, W.A., Rowshandel, B., Branum, D., and Wills, C.J., 2003, The revised 2002 California probabilistic seismic hazard maps, June 2003: California Geologic Survey, 12 p., Appendix A.

County of Los Angeles, 2013, Manual for Preparation Geotechnical Reports, July 1, 2013.

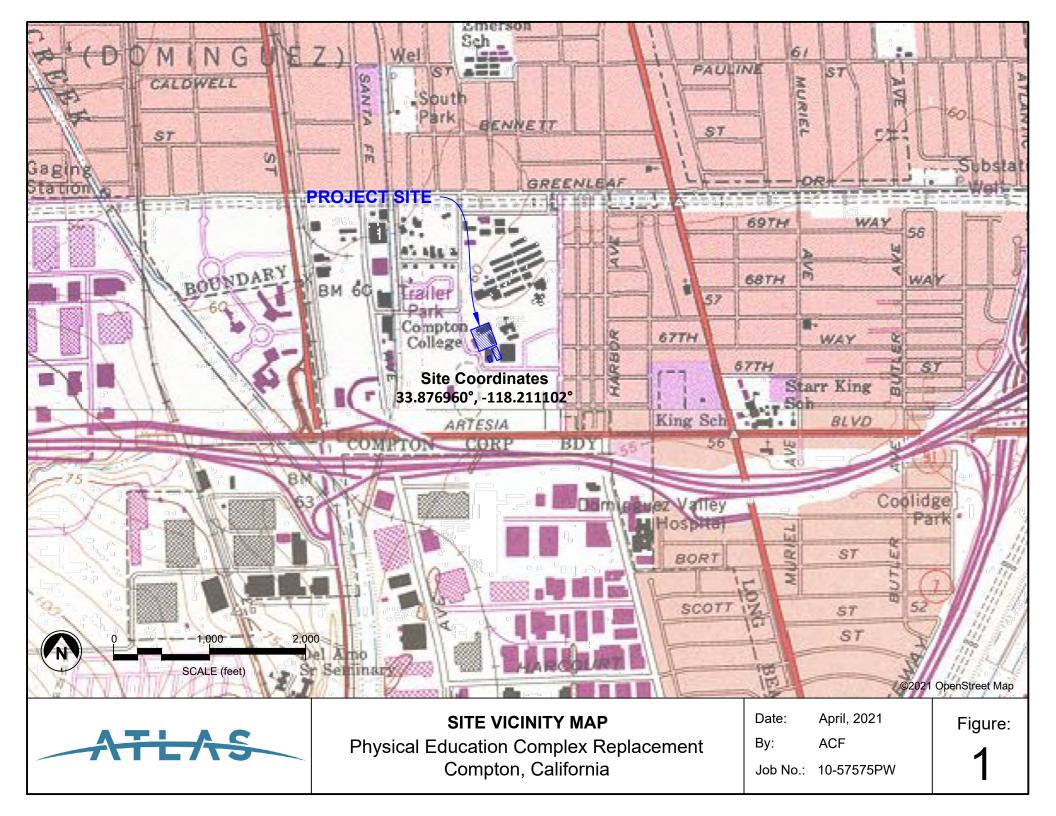
- Crouch, J.K. and Suppe, J., 1993, Late Cenozoic tectonic evolution of the Los Angeles basin and inner California borderland: A model for core complex-like crustal extension: Geological Society America Bulletin, Vol. 105, pp. 1415–1434.
- Crowell, J.C., 1976, Implications of crustal stretching and shortening of coastal Ventura Basin, California. In Howell, D.G. (Editor), Aspects of the Geologic History of the California Continental Borderland: American Association of Petroleum Geologists, Pacific Section, Miscellaneous Publication 24, pp. 365–382.

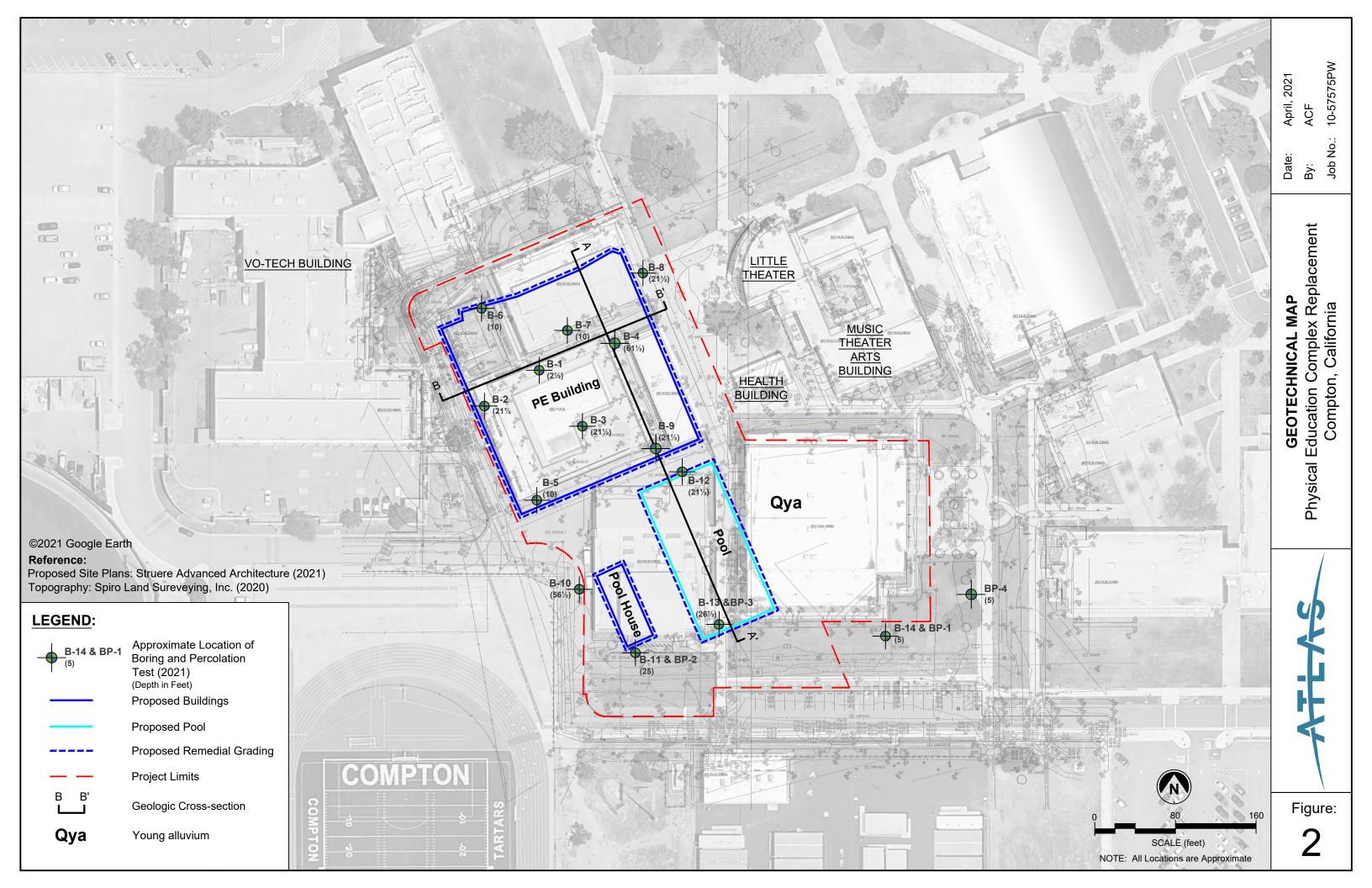
Das, Braja M., 1983, Advanced Soil Mechanics, John Benjamins Publishing Co., January 1983.

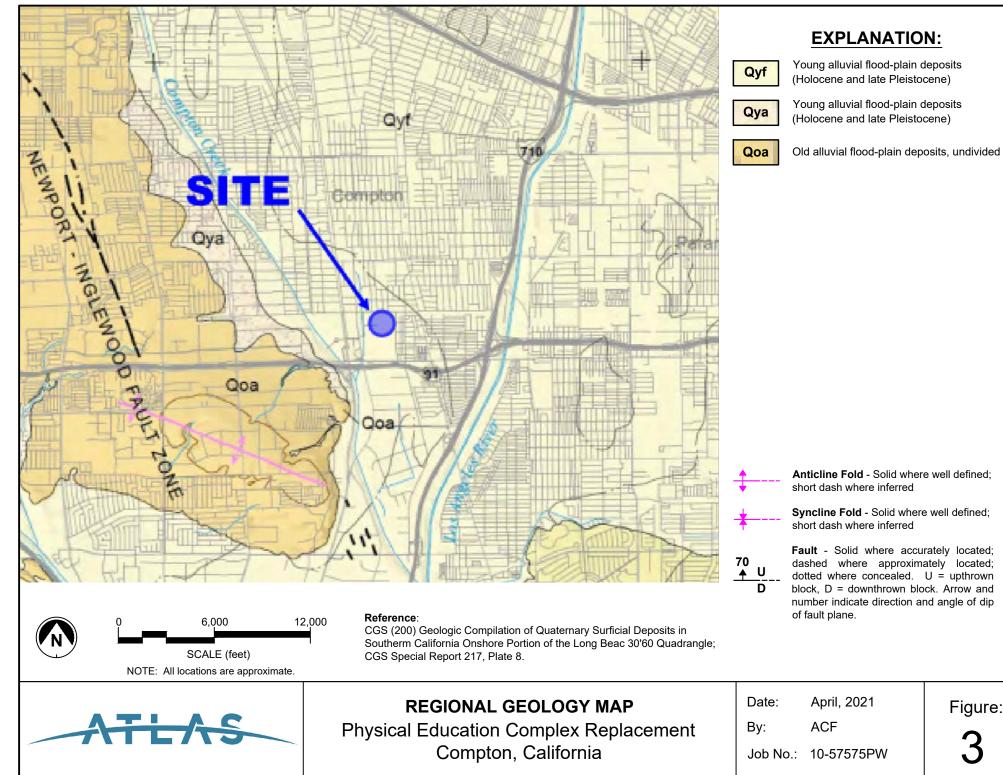
- Das, Braja M., 2000, Principles of Foundation Engineering.
- Federal Emergency Management Agency Flood Insurance Rate Map (FIRM), 2008, Panel 1815 of 2350, Map Number 06037C1815F, Effective September 26, 2008.
- Gastil, G.; Morgan, G.; and Krummenacher, D., 1981, "The tectonic history of peninsular California and adjacent Mexico", In Ernst, W. G. (Editor), "The Geotectonic Development of California", Rubey Vol. I: Prentice-Hall, Inc., Englewood Cliffs, NJ, pp. 285–306.
- Hart, E.W. and Bryant, W.A., 1999, Fault Rupture Hazard Zones in California, Alquist- Priolo Earthquake Fault Zoning Act with Index to Earthquake Maps, California Division of Mines and Geology, Special Publication 42.
- Heider Inspection Group, 2015, Geotechnical Engineering and Geologic Hazards Study Report, Proposed Instructional Building 1, El Camino College Compton Center, 1111 E. Artesia Boulevard, Compton, California 90221, Heider Inspection Group Project # HE15281-2, dated December 21, 2015.

Hsai-Yang Fang, 1997, Foundation Engineering Handbook, Second Edition.

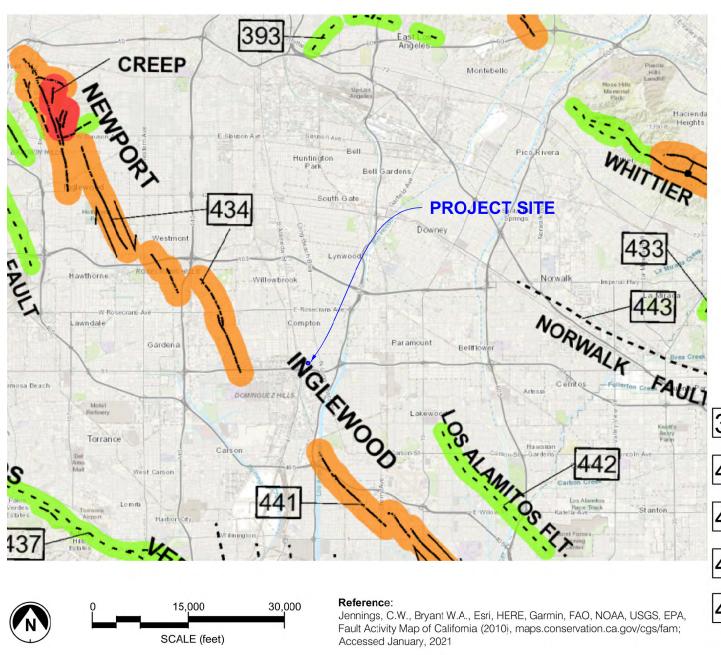
- Ingersoll, R.V. and Rumelhart, P.E., 1999, Three-stage evolution of the Los Angeles basin, Southern California: Geology, Vol. 27, pp. 593–596.
- International Code Council (ICC), 2019, California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2 of 2, 2019 Edition.
- Jennings, C.W., and Bryant, W.A, 2010, Fault Activity Map of California, Scale 1:750,000, California Geological Survey, Geologic Data Map No. 6.




- Legg, M.R., 1991, Developments in Understanding the Tectonic Evolution of the California Continental Borderland. In Osborne, R. H. (Editor), From Shoreline to Abyss: Contributions in Marine Geology in Honor of Francis Parker Shepard: SEPM (Society for Sedimentary Geology) Special Publication 46, pp. 291–312.
- Legg, M.R., Luyendyk, B.P., Mammerickx, J., and Tyce, R.C., 1989, Sea Beam Survey of an Active Strike-Slip Fault: The San Clemente Fault in the California Continental Borderland: Journal of Geophysical Research, v. 94, pp. 1727-1744.
- Martin, G.R., and Lew, M., ed., 1999, "Recommended Procedures for Implementation of DMG Special Publication 117, Guidelines for Analyzing and Mitigating Liquefaction Hazards in California," Southern California Earthquake Center, dated March 1999.
- Naval Facilities Engineering Command (NAVFAC), 1986, Foundation and Earth Structures, Design Manual 7.02.
- NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils," Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127(10), 817-833.
- Schoellhamer, J.E.; Woodford, A.O.; Vedder, J.G.; Yerkes, R.F.; and Kinney, D.M., 1981, Geology of the Northern Santa Ana Mountains, California: U.S. Geological Survey Professional Paper 420-D, U.S. Geological Survey, Denver, CO, 109 p.
- Seed, H.B. and Whitman, R.V., 1970, Design of earth retaining structures for dynamic loads, Proc. ASCE Specialty Conference on Lateral Stresses in the Ground and Design of Earth Retaining Structures, pp. 103-147.
- Shaw, J.H., Plesch, A., Dolan, J.F., Pratt, T.L., and Fiore, P., 2002, Puente Hills Blind-Thrust System, Los Angeles, California: Bulletin of the Seismological Society of America, vol. 92, no. 8, pp. 2946-2960.
- Soils and Foundations, U.S. Department of Transportation, Federal Highway Administration, Publication No. FHWA HI-88-009, Revised July 1993.
- Tokimatsu, K., Seed, H.B., 1987, "Evaluation of Settlements in Sands Due to Earthquake Shaking," Journal of the Geotechnical Engineering, American Society of Civil Engineers, Vol. 113, No. 8, pp. 861-878.
- Yoshimi, Y., Tokimatsu, K., and Hosaka, Y., 1989, "Evaluation of Liquefaction Resistance of Clean Sands Based on High-Quality Undisturbed Samples", Soils and Foundation, 29(1), 3-104. Tokyo, Japan.
- Youd, T.L., and Idriss, I.M. (Editors), 1997, Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, National Center for Earthquake Engineering Research, State University of New York at Buffalo, New York.
- Youd, T. L. et al., 2001, "Liquefaction Resistance of Soils: Summary Report from the 1996.



- United States Geological Survey, Earthquake Ground Motion Parameter Calculator for 2016 CBC Seismic Design Parameters. https://earthquake.usgs.gov/designmaps/us/application.php, http://earthquake.usgs.gov/research/hazmaps/design/index.php, , https://earthquake.usgs.gov/hazards/interactive/.
- Wright, T. L., 1991, Structural geology and tectonic evolution of the Los Angeles basin, California; In Biddle, K. T. (Editor), Active Margin Basins: American Association of Petroleum Geologists Memoir 52, American Association of Petroleum Geologists, Tulsa, OK, pp. 35-134.
- Yerkes, R. F.; McCulloch, T. H.; Schoellhamer, J. E.; AND Vedder, J. G., 1965, Geology of the Los Angeles Basin, California—An introduction: U.S. Geological Survey Professional Paper 420-A, U.S. Geological Survey, Denver, CO, 57 p.



Anticline Fold - Solid where well defined;

Syncline Fold - Solid where well defined;

Fault - Solid where accurately located; dashed where approximately located; dotted where concealed. U = upthrown block, D = downthrown block. Arrow and number indicate direction and angle of dip

Figure:

EXPLANATION:

-2

____?

Fault along which historic (last 200 years) displacement has occurred

Holocene fault displacement (during past 11,700 years) without historic record.

Late Quaternary fault displacement (during past 700,000 years).

Quaternary fault (age undifferentiated).

Pre-Quaternary fault (older than 1.6 million years) or fault without recognized Quaternary displacement.

Low angle fault (barbs on upper plate).

Unnamed fault - Unnamed fault west of Monterey Park (conceadled)

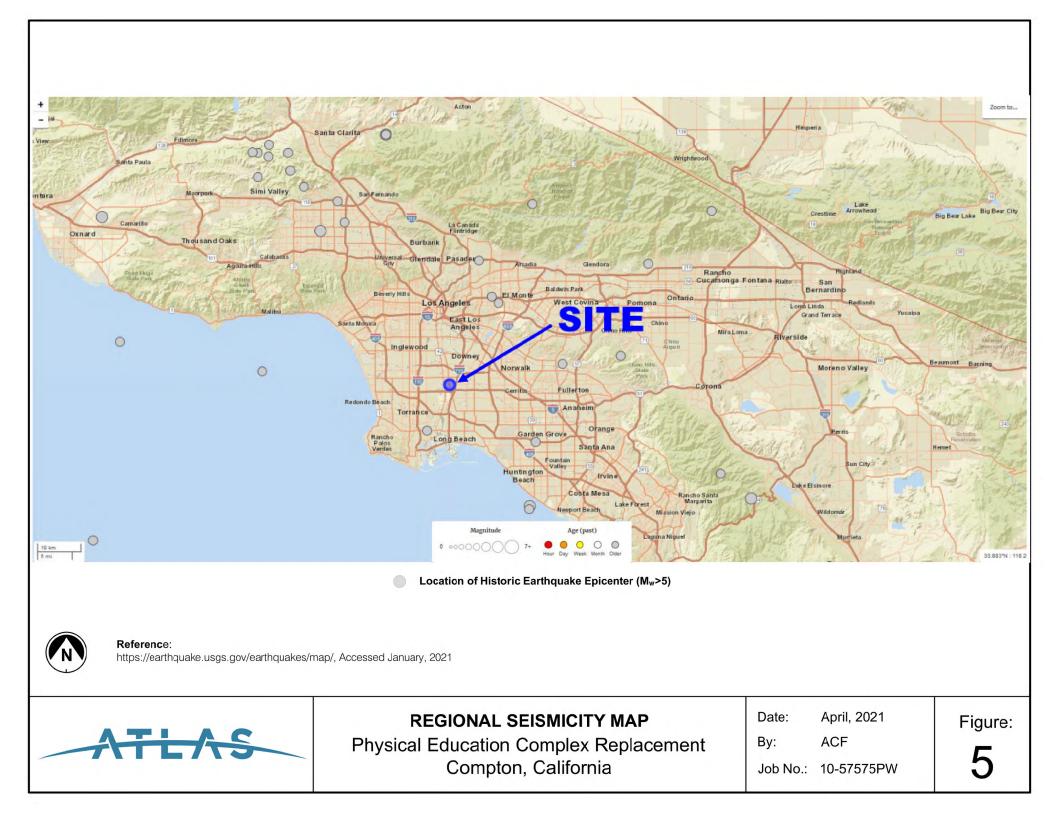
Faults in W. Coyote Hills - Faults in W. Coyote Hills (certain)

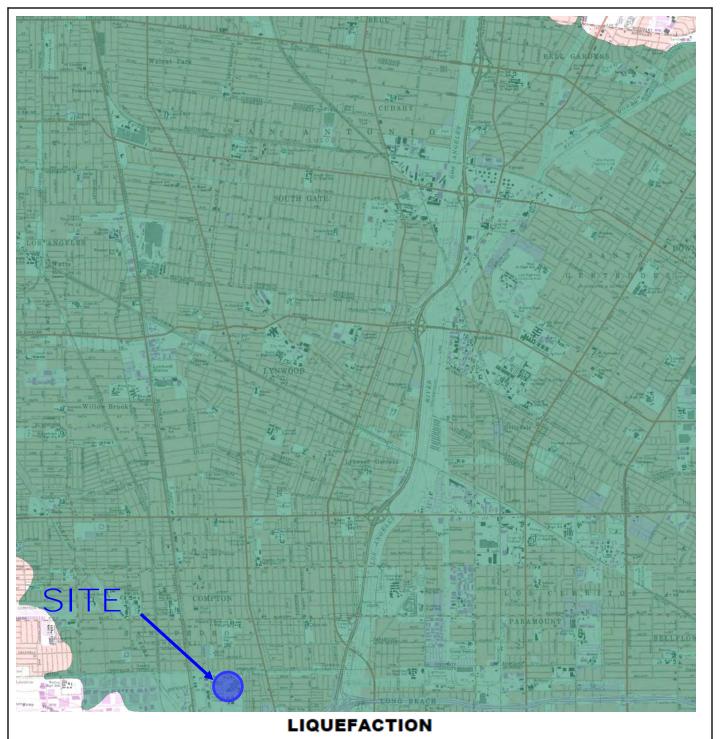
Avalon-Compton Fault -434

Newport-Inglewood-Rose Canyon fault zone

Cherry-Hill Fault -

Newport-Inglewood-Rose Canyon fault zone (concealed)


Los Alamitos Fault - Los Alamitos Fault fault zone (concealed)



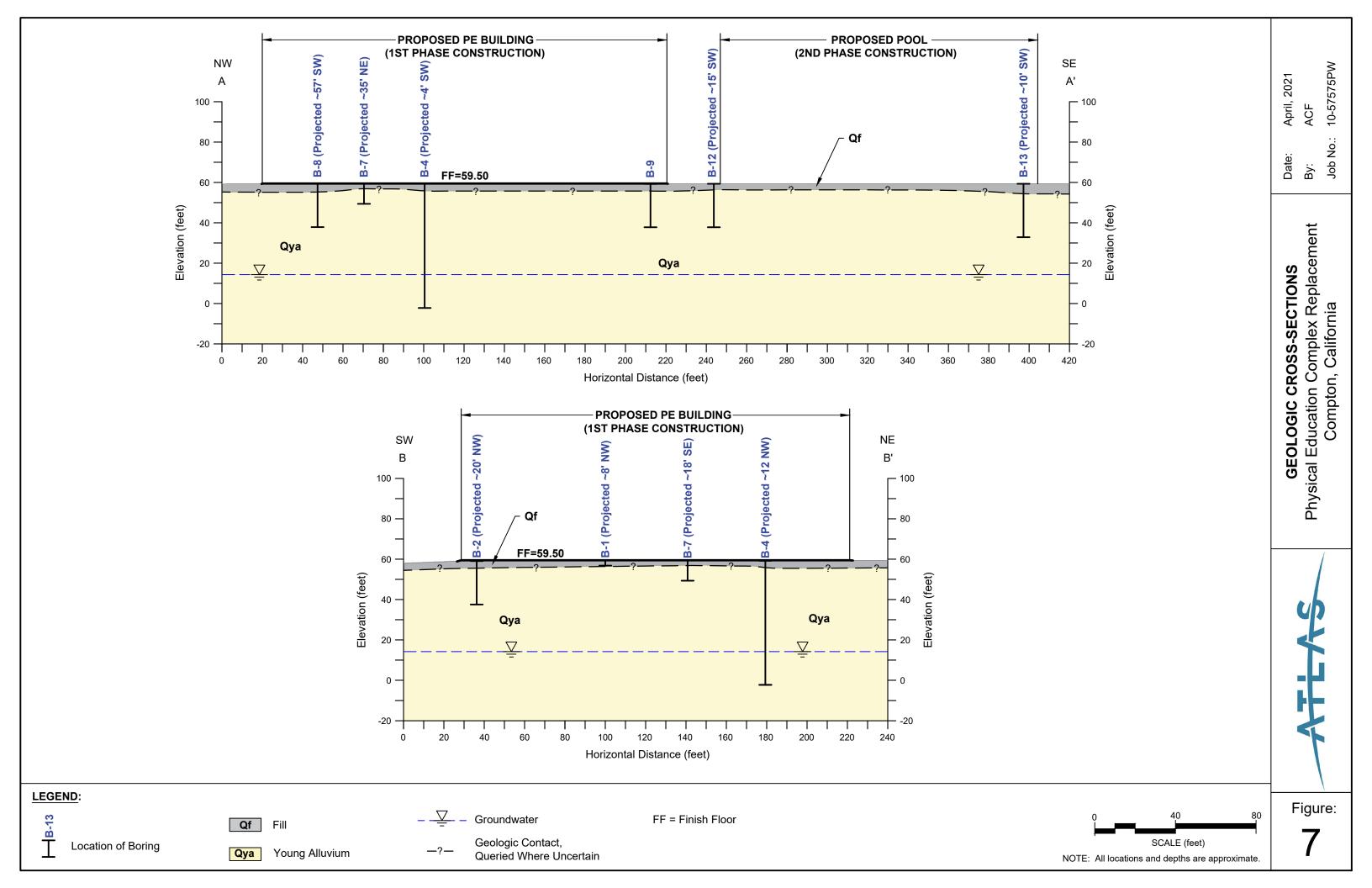
REGIONAL FAULT MAP Physical Education Complex Replacement Compton, California

April, 2021 Date: ACF By: Job No.: 10-57575PW

Figure:

Liquefaction

Areas where historic occurrence of liquefaction, or local geological, geotechnical and groundwater conditions indicate a potential for permanent ground displacements such that mitigation as defined in Public Resources Code Section 2693(c) would be required.


Earthquake-Induced Landslides

Areas where previous occurrence of landslide movement, or local topographic, geological, geotechnical and subsurface water conditions indicate a potential for permanent ground displacements such that mitigation as defined in Public Resources Code Section 2693(c) would be required.

REFERENCE: California Geologic Survey, 2016, Earthquake Zones of Required Investigation, South Gate Quadrangle, Los Angeles County, California;.

Physical Education Complex Replacement Compton, California Date: April, 2021 By: AGF Job No.: 10-57575PW

Open-File Report 98-25

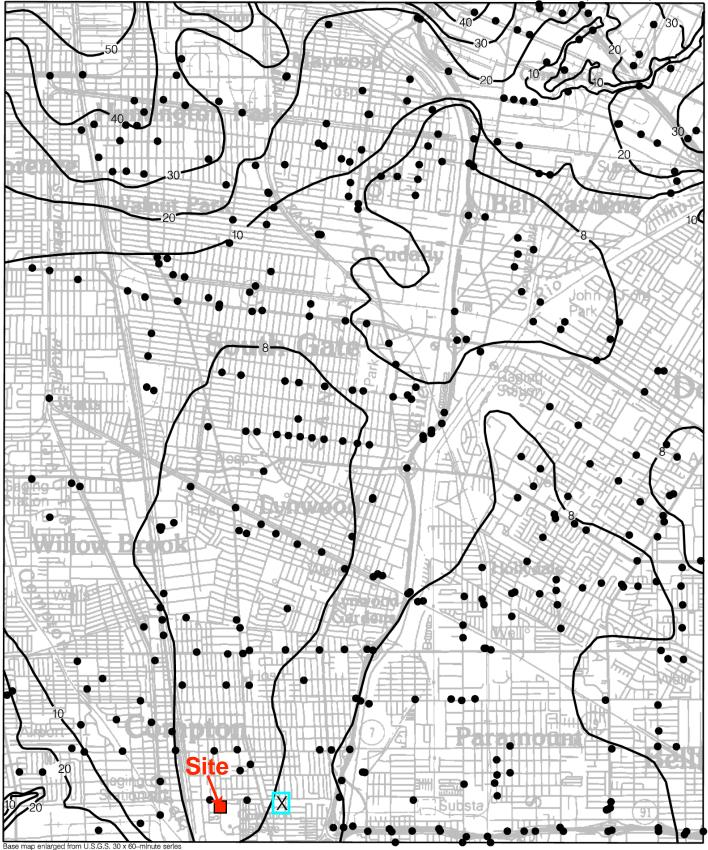


Plate 1.2 Historically Highest Ground Water Contours and Borehole Log Data Locations, South Gate Quadrangle.

Borehole Site

- 30 - Depth to ground water in feet

X Site of historical earthquake-generated liquefaction. See "Areas of Past Liquefaction" discussion in text.

ONE MILE

GW Contours: Physical Education Complex Replacement Compton, Califonia: FIGURE 8

APPENDIX II FIELD EXPLORATION

The field investigation was performed on March 2, 2020 under the supervision of an Atlas representative. A staff engineer performed a site reconnaissance to identify exploratory locations. The exploratory boring locations for the project were marked in the field by our staff engineer from existing site features. Atlas notified Underground Service Alert (USA) to identify the locations of subsurface utilities that may be in potential conflict with the boring locations. Geophysics test performed on site to find the approximate location of the underground utilities.

Subsurface exploration included drilling and sampling of 15 borings to depths ranging from about 5 feet to 61.5 feet below the ground surface within the project improvements. All the soil investigation borings and percolation borings were drilled with the diameter of 8 inches. The borings were drilled using a CME - 75 drilling rig (hollow stem auger) or hand auger. Relatively undisturbed soils samples and standard penetration tests samples were collected at regular intervals. The relatively undisturbed samples were obtained using California samplers. Standard penetration tests were also performed in general accordance with ASTM D1586. The sampler was driven 18 inches into the subsurface soils using a 140 pound hammer with a 30 inch drop. The number of blows (blow count) to drive the sampler into the subsurface soils were recorded at 6-inch intervals, and the blow counts required to drive the sampler the final 12 inches are recorded on the boring logs. The borings were backfilled with appropriate soils and materials. The boring records are presented in this Appendix.

			: т	FST		RING		S PROJEC					ROJECT NUME	BER	B-1
SITE			-				Cor	npton Coll	ege PE Comple	x Replacemer	nt STAR	10-575 T	75PW		SHEET NO.
	ion, Ca	liforr	nia								3/2/	21	3/2/21		1
-			Y					DRILL ME				LOGGED BY	,		EWED BY
Baja E	xplorat G EQU	ion IPME	NT				BORING	Hand A	uger TOTAL DEPTH (t) GROUND EL	LEV. (ft)	KBH	V. GROUND WA		(ft)
							8	,	2.5	0			OF DRILLING		
SAMPLI	NG ME	THO	D			NOTES							F DRILLING	-	
						Hammer	Efficien	icy = 73.9%	% N ₆₀ ~1.23N _{SPT}				RILLING		
ΠΞ	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	GRAPHIC COG	6 ir	nches of gra	ass and	Itonsoil	DESCRIPT	ION AND CLA	\SSIFIC	ATION			
				<u> </u>	011	iches of gra	155 anu	rtopson.							
					FIL	<u>L (af</u>):SILT\	∕ SAND		se, medium brow					S.	
-2.5	2.5							BOF	RING TERMINAT	ED AT 2½ FE	ET ON	GRAVEL BE	DDING		
	-7.5														
	_	+	ł	Ti	-^	5			OF THI SUBSU LOCAT WITH T PRESE	JMMARY APPL S BORING AND RFACE CONDI ONS AND MAY HE PASSAGE (NTED IS A SIMF TONS ENCOUP) at the tions m ' chang of time plificat	TIME OF DR AY DIFFER A E AT THIS LC . THE DATA ION OF THE	ILLING. T OTHER DCATION		Figure II-1

I	OG		: т	.Ec.		ים		AT	LAS PROJEC	T NAME			ATLAS P	ROJECT NUMI	BER	B-2
	UG		-	23			ЫQ	0	Compton Col	lege PE Complex	Replacement	OTAD	10-575			
SITE	oton, Ca	alifor	nia									STAR 3/2/2		END 3/2/21		SHEET NO. 2
	NG CON		IY IY						DRILL ME	THOD		51212	LOGGED BY		REVIE	VED BY
Baja	Explora	tion							Hollow	Stem Auger			KBH		MJ	
L		JIPME	INT						RING DIA. (in.)	TOTAL DEPTH (f				/. GROUND WA		t)
CME SAMPL	-75 .I NG ME	тно	D			N	OTES	8		21.5	0			F DRILLING		
5 140-l	b Hamr	ner,	30-iı	n Drop			Hamm	er Effic	ciency = 73.9°	% N ₆₀ ∼1.23N _{SPT}						
5		ш	щ													
	E_	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT		MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG								
EVAT (ft)	DEPTH (ft)	K S/	ы С	SLO'	2 ⁶⁰	DISIC (%)	Щd	LO			DESCRIPTION	N AND	CLASSIFIC	ATION		
EL		BUL	NRIV N			ĕ	DRY	G								
								<u> </u>	6 inche	es of grass and t	onsoil					
		\boxtimes								<u>(f):</u> SILTY SAND		lense, l	brown, damp	, fine to medi	um gra	ined,
	-	\bigotimes							micace	ous.						
	F	\bigotimes														
10-0		\bigotimes														
	F	\bowtie														
]-	YOUNG ALLUVIUM(Qya): SILTY SAND (SM), medium dense, grayish brown, moist, fine to medium grained, micaceous.															
_	5 –5 –															
25	-5	'		1												
	L		CAL	15		9.5	93.3									
				-												
	_															
	_															
Ę																
-	-															
' 2	10								L			•••••				
-10	-10								SANDY	SILT (ML), loose	to medium den	se, bro	wn, moist, n	nostly fine gra	ined, m	nicaceous.
	-		SPT	7	9											
	Γ															
5_	L															
	-															
-15	—15															
			CAL	15												
	-			15												
				1												
<u>.</u> –	-															
200																
	-															
	-20			-												
			SPT	11	14											
	-															
											BORING TE	RMINA	TED AT 21	5 FEET	1	
5											MMARY APPLIES BORING AND A					
				-	-		-			SUBSUF	FACE CONDITION	ONS MA	AY DIFFER A	T OTHER		Figure
	/	-		T	-7		-	_		WITH T	ONS AND MAY C	TIME.	THE DATA			
											TED IS A SIMPLI		UN OF THE	ACTUAL		II-2
· •										1						

	OG	OF	- т	FS	T R	ORI	NG		S PROJEC						ROJECT NUN	IBER	B-3
	00		-				10	Con	npton Col	llege l	PE Complex	Replacement	STAR	10-575 T	75PW	SH	EET NO.
Com	oton, Ca	alifor	nia								_		3/2/2		3/2/21		3
	NG CON Explora		IY						DRILL MI Hollow					LOGGED BY KBH		REVIÈWE MJ	DBY
			ENT					BORING				GROUND ELE	V. (ft)		. GROUND W		
CME		TUO						8		21	.5	0			OF DRILLING		
	b Hamr			n Dron			OTES	Efficien	ov - 73 0	% N	~1.23N _{SPT}			¥ AT END O ¥ AFTER DR			
	oriani								cy - 10.0	70 TN ₆₀	1.20N _{SPT}						
ELEVATION (ft)	DEPTH (ff)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						N AND CLASS	IFICA	ΓΙΟΝ			LAB TESTS
5						XXXXX					r 4 inches of	* Base rown, dry, fine *	to mor	lium grainad	micacoous		-
	_		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				YO	UNG A	LLUVIUM	I(Qya) <u>:</u> SILTY SAN	rown, ary, tine t		-			MAX
5	_						grai	ned, m	icaceous,	, silt le	enses.						
-5	5			-			•										
	_		SPT	9	11		:										
							•										
	_						•										
<u> </u>	_						•										
	_																
ç 10	—10			-													
			CAL	10			:										
	-			-			SAN	NDY SI	LT (ML),	mediu	um dense, bro	wn, moist, mos	stly fin	e grained, mi	caceous.		
	_																
Ë	_																
0 –	_																
-15																	
			SPT	11	14				ND (SM)	mediu	um dense ar	ayish brown, mo	oist. fir	e to medium	grained mi	caceous	.
	-							or oxida				, <i>s</i> .e.m, m	, 14		J		
2	_																
							:										
	-						•										
	_																
20																	
20	—20						:										
1710114	_		CAL	21			•										
:			!	1		<u>, 1 - 1 - 1 - 1</u>	L				BORING TI	RMINATED A	T 21.5	FEET			1
	_	-	4	T	5	4					OF THIS SUBSURI LOCATIO WITH TH PRESEN	IMARY APPLIES BORING AND A FACE CONDITIC NS AND MAY C E PASSAGE OF TED IS A SIMPLI	T THE DNS M HANG TIME. FICAT	TIME OF DR AY DIFFER A E AT THIS LC THE DATA	ILLING. T OTHER DCATION		Figure II-3
c .												ONS ENCOUNT	ERED.				11-3

	OG		= т	FS	TR	NRI	NG			AS PROJECT						ROJECT NUMB	ER	B-4
	00			L0	ים ו				С	ompton Coll	ege PE	Complex	Replacer	nent STAR	10-575 T	575PW	SH	EET NO.
Com	oton, Ca	alifor	nia											3/2/		3/2/21		4
	NG CON	/IPAN	IY							DRILL ME	THOD			0/2/	LOGGED BY	/ 0 <i>, 2, 2</i> F	REVIEWE	DBY
Baja	Explora									Hollow	Stem Au	uger			КВН		MJ	
	NG EQL	JIPME	ENT					1		NG DIA. (in.)		DEPTH (ft		DELEV. (ft)		V. GROUND WA		
	-75 . ING ME						OTES		8		61.5		0					Elev -44.50 π
	b Hamr			n Dron		'		or F	Effici	ency = 73.9%	6 N. ~1	23N			¥ AT END C ¥ AFTER DF		-	
										onlog 70.07	01 4 60 1							
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC						ND CLASS	SIFICATION			LAB TESTS
5								. <u>``''</u>			-	ass and to						EI, COR
	-								- 	micaced	bus, roo	tlets.			, fine to med	ium grained, SM), medium		- EI, COR
	5									dense, ç	grayish	brown, dry	y to damp,	fine to med	lium grained,	micaceous.		
	_		SPT	13	16													
	_																	
	_																	
	10																	
	_		CAL	15														DS
	_																	
	_																	
2	—15 -		SPT	14	17													
00	_																	
	_																	
4/ 12/01	_																	
AILAS LUG REPUKI		-	4	T		4	5					OF THIS SUBSUR LOCATIO WITH TH	BORING A RFACE CON ONS AND M HE PASSAC	ND AT THE DITIONS M AY CHANG E OF TIME	Y AT THE LO TIME OF DR AY DIFFER A E AT THIS LO THE DATA	ILLING. T OTHER DCATION		Figure
														SIMPLIFICAT	ION OF THE	ACTUAL		II-4

	OG		: т	ES	ΓR		NG			LAS PROJECT							JECT NUM	IBER	B-4
			-	20	ים י		UF 1		C	Compton Coll	ege PE	Complex I	Replacement	STAR		7575 El	PW ND		SHEET NO.
Com	pton, C	alifor	nia											3/2/	21	;	3/2/21		5
-	NG CON		Y							DRILL ME Hollow S		Ider			LOGGED KBH	BY		REVIE MJ	WED BY
	Explora	JIPME	INT						BOR				GROUND ELE	V. (ft)	DEPTH/EL			ATER (
	-75 _ING ME	TUO	n				IOTES		8		61.5		0						t / Elev -44.50 ft
140-	lb Hami			ו Drop				ner E	Effic	iency = 73.9%	% N₀₀~1	.23Nspt			¥ AT END ¥ AFTER		-		
											00 .	or I							
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC	DOJ										LAB TESTS
			CAL	26		10.0	104.8						m dense, gray able silt and sa			ediun	n grained,	minor	WA
20-	F		CAL	26		19.9	104.8				,	,			0				65.1%
	- - 25									Loose.									
	L		SPT	7	9														AL
	- - 30									Medium	donao								
			CAL	23		25.1	97.4			Wealum	uense.								WA
	- - 		SPT		27	25.1	97.4												89.7%
	_	-	4	Ŧ	-7	4	5					OF THIS E SUBSURF LOCATIO WITH THE PRESENT	IMARY APPLIE 30RING AND A ACE CONDITIONS AND MAY C E PASSAGE OF ED IS A SIMPL ONS ENCOUNT	AT THE ONS M CHANG TIME. IFICAT	TIME OF E AY DIFFER E AT THIS THE DAT ION OF TH	DRILLI 8 AT C LOCA A	ING. DTHER ATION		Figure

LOG OF TEST BORING ATEAS PROJECT NAME ATEAS PROJECT NAME SITE Compton College PE Complex Replacement 10-57575PW Compton, California 3/2/21 3/2/21 DRILLING COMPANY DRILL METHOD LOGGED BY Baja Exploration Hollow Stem Auger KBH DRILLING EQUIPMENT BORING DIA. (in.) TOTAL DEPTH (ft) GROUND ELEV. (ft) DEPTH/ELEV. GROUND MADE	REVIEWED MJ VATER (ft) _44.50 ft / Ele	B-4 ET NO. 6 BY
Compton, California 3/2/21 3/2/21 DRILLING COMPANY DRILL METHOD LOGGED BY Baja Exploration Hollow Stem Auger KBH DRILLING EQUIPMENT BORING DIA. (in.) TOTAL DEPTH (ft) GROUND ELEV. (ft) DEPTH/ELEV. GROUND V	REVIEWED MJ VATER (ft) _44.50 ft / Ele	6
DRILLING COMPANY DRILL METHOD LOGGED BY Baja Exploration Hollow Stem Auger KBH DRILLING EQUIPMENT BORING DIA. (in.) TOTAL DEPTH (ft) GROUND ELEV. (ft) DEPTH/ELEV. GROUND V	MJ VATER (ft) _44.50 ft / Ele	
DRILLING EQUIPMENT BORING DIA. (in.) TOTAL DEPTH (ft) GROUND ELEV. (ft) DEPTH/ELEV. GROUND	VATER (ft) 44.50 ft / Ele	
	_44.50 ft / Ele	
		11 50 8
CME-75 8 61.5 0 ♀ AT TIME OF DRILLING SAMPLING METHOD NOTES ♀ AT END OF DRILLING		ev -44.50 π
DESCRIPTION AND CLASSIFICATION		LAB TESTS
SILTY SAND (SM), medium dense, gray, moist, fine grained, minor oxid variable silt and sand lensing.	ation,	
SANDY SILT (ML), medium dense, gray, moist, fine to medium grained oxidation, micaceous, variable silt and sand lensing.	minor	
		AL
		WA 66.4%
-55 55 -55 55 SPT 36 - -	n,	
THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA PRESENTED IS A SIMPLIFICATION OF THE ACTUAL CONDITIONS ENCOUNTERED.		Figure II-6

	OG		: т	501		וסר		A	ATLA	S PROJEC	Γ ΝΑΜΕ				ATLAS P	ROJECT NUM	BER	B-4
	UG			ES		JRI	NG		Con	npton Coll	ege PE	Complex I	Replacement		10-575			
SITE														STAR		END	1	SHEET NO.
	oton, Ca NG CON	aliforr IPAN	nia Y							DRILL ME	THOD			3/2/2	21 LOGGED BY	3/2/21	REVIE	7 VED BY
<u></u>	Explora									Hollow		uger			KBH		MJ	
≦ DRILLI			NT					BC	ORING	3 DIA. (in.)	TOTAL	DEPTH (ft)	GROUND ELE		DEPTH/ELE\	/. GROUND W	ATER (f	
CME	-75							8	3		61.5		0			-		/ Elev -44.50 ft
SAMPL	ING ME						IOTES		c			0001						
≞ 140-l ≚	b Hamr			ט Drop				ner Eff	ricien	cy = 73.99	∕₀ N ₆₀ ~1	.23N _{SPT}				RILLING		
ON G	-	SAMPLE	DRIVE SAMPLE	oT 0		Ш	DRY DENSITY (pcf)	<u>ں</u>										
ELEVATION (ft)	DEPTH (ft)	SAN	SAN	BLOWS PER FOOT	N_{60}	MOISTURE (%)	DEN(GRAPHIC LOG	S			DESCR	IPTION AND C	CLASS	IFICATION			LAB TESTS
	ä	BULK	IVE	BL		<u>Ö</u>	۲ ۲	1 2 2 1 2 1	1									
		<u>छ</u>	Ы			-	ā											
										SILTY S	SAND (S	SM), dense	, dark gray, mo	oist, fin	e grained, m	inor oxidation	,	
	_		CAL	80						variable	SIL and	sand lensi	ng, saturated.	(contin	luea)			
M-16/								[••]••]				BORI	NG TERMINA	TED A	T 61½ FEE	Г		
-	-																	
2	_																	
11 + _	_																	
5 NIX																		
-65	-65																	
C I																		
-	_																	
EK 2																		
- -	_																	
	_																	
G18	-																	
50002																		
	70																	
DEX (
- -	Γ																	
	Ļ																	
NON																		
2 Z	-																	
	-																	
- -																		
2	75																	
	L																	
0.																		
	F																	
2. 1 2 1																		
-	-																	
1 08:																		
	-																	
													IMARY APPLIES					
				_			-					SUBSURF	BORING AND A	ONS MA	AY DIFFER A	T OTHER		Figure
LOG	-	-	1	T	-	-	5	_				LOCATIO	NS AND MAY C E PASSAGE OF	HANGE	E AT THIS LC	OCATION		
AILAS LUG KEPUKI		-										PRESENT	ED IS A SIMPLI	IFICATI	ION OF THE	ACTUAL		II-7
A												CONDITIC	DING ENCOUNT	ERED.				11-/

	06		- т	FST	BOR			S PROJEC						ROJECT NUM	BER	B-5
	00			LUI	DOIN		Con	npton Coll	lege P	E Complex	Replacemen	t STAR	10-575 T	75PW		SHEET NO.
	oton, Ca	alifor	nia									3/2/		3/2/21		8
DRILLI	NG CON	IPAN	IY					DRILL ME	ETHOD				LOGGED BY			WED BY
Baja	Explora	tion						Hand A) GROUND EL	E\/ (#)		/. GROUND W		F4 \
			_1111				8	3 DIA. (III.)	10			∠v . (it)		F DRILLING		it)
SAMPL	ING ME	тно	D			NOTES								F DRILLING		
	[Hammer	Efficien	icy = 73.9%	% N ₆₀ ∼	1.23N _{SPT}			¥ AFTER DR	RILLING		
	- -	SAMPLE	APLE	<u>ں</u>												
	DEPTH (ft)	K SAN	DRIVE SAMPLE	GRAPHIC LOG					0	DESCRIPTI	ON AND CLA	SSIFIC	ATION			
EL		BULK	DRIV	0												
						ches of gra										
	_				FILL	<u>. (af)</u> :SILTY	' SAND	(SM), loos	se, bro	wn, damp,	fine to medium	n graine	d, micaceous	S.		
	_															
- - -	_															
-	_															
	2.5															
	_															
	_				YOU	ING ALLUV	/IAL FA	N DEPOS	SITS (C	<u>lyf)</u>: SILTY	SAND (SM), r	nedium	dense, grayi	sh brown, da	mp, fine	e to medium
_	_				grair	ned, micace	ous.									
	_															
	5.0				Vari	able silt and	sand k	ansing								
	_				van		Sanu id	anoning.								
	_															
0																
	_															
	-															
1	7.5															
-																
-	_															
	_															
										BORING	TERMINATI	ED AT	10 FEET			
											MMARY APPL			DCATION		
			4	-	-	C				SUBSUF	BORING AND FACE CONDIT	IONS M	AY DIFFER A	T OTHER		Figure
	-	-		11	-77	5	-			WITH TH PRESEN	HE PASSAGE C TED IS A SIMP	of time 'Lificat	. THE DATA ION OF THE .			II-8
																0

STFE Compton California START Into Anger START STA		$\cap C$: т	ECT			ATLAS PROJEC	TNAME			ATLAS P	ROJECT NUME	BER	P 6
Compton California 3221 3221 9 Bear Excloration Hand Ager Compton Hernet Mode		UG		- 1	<u>_</u> 31	DUR	DNING	Compton Col	lege PE Complex						B-6
DBILLING COMPARY DBILL INFTHOD LOGGED BY REVENEED BY Bage Exploration Hand Auger KBH NU DBILLING EXCENTING BORING DIA, MJ, 1074.0. DEPTH (H) GROUND LEV, (M) DEPTHELEV, GROUND VICER (H) 2.4.7 THRO F DBILLING														1	
Egge Exploration Herd Auger KH M CPULING SCUPPHART CONDUCT OCIDAND COUPHELEX (ROUND WATER) OCIDAND COUPHELEX (ROUND WATER) SAMPLING METHOD NOTES 2 AT TIME OF DRILLING		pton, Ca NG CON	alifori IPAN	nia Y					ETHOD		3/2/2				
DelLune Bouliment BORING DIA (In) OFAL DEPTH (I) DepTh (ELEV) DepTh (ELEV) <thdepth (elev)<="" th=""> DepTh (ELEV) DepT</thdepth>	-			•											
SAMPLING DETHOD NOTES AT TIME OF DEILLING				NT				BORING DIA. (in.)	TOTAL DEPTH (ft)	GROUND ELE	V. (ft)				t)
SAMPLING METHOD NOTES Hammer Efficiency = 73.9% Num*1.23Num* Y AT EN OF DRULING	-														
No. No. No. Sector	SAMPL	ING ME	тно	D					·			T END O	F DRILLING		
- -	į	1	,,				Hammer	Efficiency = 73.9	% N ₆₀ ~1.23N _{SPT}				ILLING		
- -			ш	Щ											
- -	VATION (ff)	Т	JPL	MPI	읓										
- -	E) AT	(#)	SAN	SA	₽₽				DESCRIPTIC	ON AND CLASS	SIFICA	ATION			
- -	Ĺ ĹĹ	B	Ľ	NE	GR/										
-5.0 -5.0 -5.0 -5.0 - -	Ш		BU	DR											
-5.0 -5.0 -5.0 -5.0 - -					<u></u>	6 in	ches of are	ass and topsoil							
-5.0 -5.0 -5.0 -5.0 - -					17.51,	0 11									
-5.0 -5.0 -5.0 -5.0 - -	8-	╞				FILI	. (af):SILTY	SAND (SM). Inn	se, brown. damp fi	ne to medium a	graine	d, micaceous	, trace gravel		
-5.0 -5.0 -5.0 -5.0 - -	5							- (,,	,, source, r			,	, - 3, 5, 5,		
-5.0 -5.0 -5.0 -5.0 - -	5	F													
-5.0 -5.0 -5.0 -5.0 - -															
-5.0 -5.0 -5.0 -5.0 - -		F													
-5.0 -5.0 -5.0 -5.0 - -															
-5.0 -5.0 -5.0 -5.0 - -		Γ													
-5.0 -5.0 -5.0 -5.0 - -															
-5.0 -5.0 -5.0 -5.0 - -	-2.5	_2.5													
-5.0 -5.0 -5.0 -5.0 - -		L													
-5.0 -5.0 -5.0 -5.0 - -	1		\bigotimes			YOL	JNG ALLUV	A FAN DEPOS	SITS (Qyf): SILTY S	SAND (SM), me	edium	dense, grayi	sh brown, dan	np, fine	e to medium
-5.0 -5.0 -5.0 -5.0 - -		_	\bigotimes			grali	ieu, micace	005.							
-5.0 -5.0 -5.0 -5.0 - -			\bigotimes												
-5.0 -5.0 -5.0 -5.0 - -	-	F	\bigotimes												
-5.0 -5.0 -5.0 -5.0 - -	5		\bigotimes												
SANDY SILT (ML), loose, dark brown, moist, fine to medium grained, micaceous. SANDY SILT (ML), loose, dark brown, moist, fine to medium grained, micaceous. BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE IME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY OFFER AT OTHER LOC		F	\bowtie												
SANDY SILT (ML), loose, dark brown, moist, fine to medium grained, micaceous. SANDY SILT (ML), loose, dark brown, moist, fine to medium grained, micaceous. BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE IME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY OFFER AT OTHER LOC															
SANDY SILT (ML), loose, dark brown, moist, fine to medium grained, micaceous. SANDY SILT (ML), loose, dark brown, moist, fine to medium grained, micaceous. BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS AND MAY DIFFER AT OTHER LOCATIONS AND MAY OFFER AT OTHER	i	5.0													
-7.5 -7.5	2														
BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT TO FER AT Figure F		-													
BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT TO FER AT Figure F															
BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT TO FER AT Figure F	ŀ	╞													
BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT TO FER AT Figure F	5														
BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT TO FER AT Figure F	-	F													
BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT TO FER AT Figure F															
BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT TO FER AT Figure F		F													
BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING, SUBSURFACE CONDITIONS MAY DIFFER AT TO FER AT Figure F															
BORING TERMINATED AT 10 FEET BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA DEFENSIVE AD UP TIME, THE DATA	1	-1.5	\bigotimes			SAN	IDY SILT (N	/L), loose, dark b	rown, moist, fine to	medium graine	ed, mic	caceous.			
BORING TERMINATED AT 10 FEET BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA DEFENSIVE AD UP TIME, THE DATA		L	\bigotimes												
BORING TERMINATED AT 10 FEET BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA DEFENSIVE AD UP TIME, THE DATA		「	\bigotimes												
BORING TERMINATED AT 10 FEET BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA DEFENSIVE AD UP TIME, THE DATA		L	\bigotimes												
BORING TERMINATED AT 10 FEET BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA DEFENSIVE AD UP TIME, THE DATA	<u>,</u>		\bigotimes												
BORING TERMINATED AT 10 FEET BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA DEFENSIVE AD UP TIME, THE DATA	_	L	\bowtie												
BORING TERMINATED AT 10 FEET BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA DEFENSIVE AD UP TIME, THE DATA	i i i i i i i i i i i i i i i i i i i														
BORING TERMINATED AT 10 FEET BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA DEFENSIVE AD UP TIME, THE DATA	-	Ļ													
BORING TERMINATED AT 10 FEET BORING TERMINATED AT 10 FEET THIS SUMMARY APPLIES ONLY AT THE LOCATION OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA DEFENSIVE AD UP TIME, THE DATA	F										-				
OF THIS BORING AND AT THE TIME OF DRILLING. SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA DEFENSION OF TIME. THE DATA															
SUBSURFACE CONDITIONS MAY DIFFER AT OTHER LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME. THE DATA DEFENSION OF TIME, THE DATA	ő														
LOCATIONS AND MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA				-	-		-		SUBSUR	ACE CONDITIC	ONS M	AY DIFFER A	T OTHER		Figure
		-	-	1-	TT	-	5		LOCATIO	NS AND MAY C	HANG	E AT THIS LC	CATION		
CONDITIONS ENCOUNTERED. 11-9			-	-					PRESEN	ED IS A SIMPLI	FICAT	ION OF THE	ACTUAL		11.0
									CONDITIO	ONS ENCOUNT	ERED.				11-9

	\sim	Ωг		ГОТ		ATLAS PROJEC	TNAME			ATLAS P	ROJECT NUME	BER	D 7
	UG		- 1	E91	BORING	Compton Col	lege PE Complex			10-575			B-7
SITE									STAR		END	5	SHEET NO.
DRILLIN	oton, Ca	alifor	nia I Y			DRILL MI	ETHOD		3/2/2	21 LOGGED BY	3/2/21		10 VED BY
-	Explora					Hand A				KBH		MJ	
		IPME	INT			BORING DIA. (in.)	TOTAL DEPTH (ft)	GROUND ELE		DEPTH/ELE\	/. GROUND W	ATER (ft	t)
						8	10	0			of Drilling _		
SAMPL	ING ME	тно	D		NOTES						F DRILLING		
					Hammer	Efficiency = 73.9	% N ₆₀ ∼1.23N _{SPT}			V AFTER DR	RILLING		
ELEVATION (ft)	DEPTH (ff)	BULK SAMPLE	DRIVE SAMPLE	GRAPHIC LOG			DESCRIPTIC	ON AND CLAS	SIFICA	TION			
	_			1/1. 1/1. 1/1.	_	ss and topsoil.							
	-				FILL (af):SILTY	SAND (SM), loo	se, brown, dry, fine	to medium gra	ained, r	nicaceous.			
	-2.5				YOUNG ALLUV	AL FAN DEPOS	SITS (Qyf): SILTY S	SAND (SM), m	 edium	dense, gravi	sh brown, dar	 np, fine	to medium
	- - - 				grained, micace	ous, minor mottli		TERMINATE	D AT [,]	10 FEET			
		-	1	Tt	AS		OF THIS I SUBSURF LOCATIO WITH TH	MMARY APPLIE BORING AND A FACE CONDITIONS AND MAY C E PASSAGE OF	T THE ONS M/ HANGI	TIME OF DRI AY DIFFER A E AT THIS LC THE DATA	ILLING. T OTHER DCATION		Figure
								ED IS A SIMPLI		ON OF THE	ACTUAL		II-10

	06		: т	FS		ORI	NG		S PROJEC						ROJECT NUM	BER	B-8
SITE							.0	Con	npton Col	lege F	PE Complex	Replacement	STAR	10-575 r	75PW	SHI	EET NO.
- Comp	oton, C	alifor	nia										3/2/2	21	3/2/21		11
			Y													REVIEWE	DBY
Baja B	Explora	JIPME	ENT					BORING	Hollow : G DIA. (in.)	TOT	Auger AL DEPTH (ft)	GROUND ELE	V. (ft)	KBH DEPTH/ELEV	. GROUND W	MJ ATER (ft)	
CME-	75							8		21		0		⊈ AT TIME C			
SAMPL				- D			DTES	Fficie	ov - 70.00	0/ 1	1 0 2 1						
140-1	o Hamr			ropע ו			ammer	Enicien	cy = 73.95	70 N ₆₀ 7	~1.23N _{SPT}			X AFTER DR	ILLING		
ELEVATION (ff)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	PER FOOT SWOJB	N ₆₀	GRAPHIC LOG						N AND CLASS	BIFICA ⁻	ΓΙΟΝ			LAB TESTS
2 2						<u> </u>			of landsca			unan aluma filman	4			4	_
	- - - 5			45			gra	UNG A	LLUVIUM	(Qya)	: SILTY SAN	rown, dry, fine D (SM), loose bus, minor mot	to med	-			
5	- - - 			15													CON
	- - - 		SPT	6	7								. <u></u>				
	- - - 		CAL	21			SA	NDY SI	LI (ML), I	mediu	m dense, bro	wn, moist, mo	stly find	e grained, mi	caceous.		
20	_		SPT	12	15			LTY SA	ND (SM),	medi	um dense, br	own, moist, fin	. <u> </u>	edium graine	d, micaceous	, minor /	-
÷											BORING TI	ERMINATED A	T 21.5	FEET		/	
		-	1	T	-	4.					OF THIS SUBSURI LOCATIO WITH TH PRESEN	IMARY APPLIE BORING AND A FACE CONDITI NS AND MAY C E PASSAGE OF FED IS A SIMPL DNS ENCOUNT	AT THE ONS M/ CHANGI TIME.	TIME OF DRI AY DIFFER A E AT THIS LC THE DATA	lling. Tother Ication		Figure II-11

	OG		: т	۲۵.		J RI			PROJEC						ROJECT NUM	IBER	B-9
	UG		- 1	<u>E</u> 3			NG	Com	pton Col	llege PE	Complex	Replacement	STAR	10-575	75PW		D-3 SHEET NO.
	pton, Ca	alifor	nia										3/2/2		3/2/21		12
	NG CON	IPAN	IY						DRILL ME	ETHOD			0/2/2	LOGGED BY		REVIE	WED BY
Baja	Explora	tion							Hollow	Stem A	uger			KBH		MJ	
ւ		IIPME	ENT						DIA. (in.)			GROUND ELE		DEPTH/ELE\ ⊈ AT TIME C			ft)
	-75 JNG ME	тно	D			N	OTES	8		21.5		0		¥ AT END O			
5 140-I	b Hamr	ner,	30-ir	n Drop			Hammer	Efficienc	y = 73.9°	% N ₆₀ ~1	.23N _{SPT}						
פוא		ш	щ														
	H	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	9	GRAPHIC LOG											
	DEPTH (ft)	N N	VE S	BLO ER F	N ₆₀	LC					DESC	RIPTION AND	CLAS	SIFICATION			
Ē		BUI	DR														
											inches of						
	-	\bigotimes					<u> FII</u>	<u>_L (Qf):</u> S	SILTY SA	AND (SM	/I), loose, b	rown, moist, fi	ne to m	edium graine	ed.		
		\bigotimes					Š										
c/c/c	-	\bigotimes					8										
	-	\bigotimes					3										
							<u> </u>	OUNG AL	LUVIUM	l(Qya):	SILTY SAN	ID (SM), loose,	grayis	h brown, mo	ist, fine to m	edium g	grained.
11- 	Γ															-	
	_		CAL	17													
- 107 H	-																
	_																
П																	
	-																
	—10																
			SPT	7													
	-		571		9												
	L																
Ļ																	
	-																
	L																
	—15						SA	NDY SIL	 T (ML), ı	medium	dense, bro	wn, moist, fine	e to me	dium grained	l, micaceous	, minor	oxidation.
	L		CAL	10					. ,		-	·		-			
	-																
	L																
	-																
-20	-20																
			SPT	9	11												
	-												ATE>	AT 04 5	-		
											OF THIS	MARY APPLIE	T THE	TIME OF DRI	LLING.		Figure
5		1	1	-			2				LOCATIO	FACE CONDITI	CHANGI	E AT THIS LO	I OTHER CATION		i iyuite
	-	-			- /			-			PRESEN	E PASSAGE OF	IFICAT		ACTUAL		II 1 2
4											CONDITI	ONS ENCOUNT	ERED.				II-12

LOG OF TEST BORING	ATLAS PROJECT NAME	ATLAS PROJECT NUMBER	B-10
	Compton College PE Complex Replacement	10-57575PW	
SITE Compton, California	START 3/1/21	END 3/1/21	SHEET NO. 13
			WED BY
Baja Exploration		KBH MJ	
		EPTH/ELEV. GROUND WATER (
SAMPLING METHOD NOTES		AT TIME OF DRILLING 52.00 1	τ / Elev -52.00 π
		AT END OF DRILLING AFTER DRILLING	
ELEVATION ELEVATION (ft) DEPTH (ft) BULK SAMPLE DRIVE SAMPLE DRIVE SAMPLE BLOWS PER FOOT N ₆₀ MOISTURE (%) DRY DENSITY (pcf)	DESCRIPTION AND CLASSIF	ICATION	LAB TESTS
	6 inches of grass and topsoil.		
	FILL (af):SILTY SAND (SM), loose, dark brown, c micaceous.	dry, fine to medium grained,	EI, COR
140-lb Hammer, 30-in Drop Hammer, 30-in Drop 100-lb Hammer, 30-in Drop Hammer, 30-in Drop 110-10 Hammer, 30-in Drop 110-10 SPT 5	YOUNG ALLUVIAL FAN DEPOSITS (Qyf): SANI moderate brown, moist, fine to medium grained, n	DY SILT (ML), loose, nicaceous.	AL
	SILTY SAND (SM), loose, moderate brown, damp micaceous. Medium dense, moist, mottling, silt lenses.	, fine to medium grained,	
	THIS SUMMARY APPLIES ONLY A OF THIS BORING AND AT THE TI		
ATLAS	UCATIONS AND MAY THE TH SUBSURFACE CONDITIONS MAY LOCATIONS AND MAY CHANGE A WITH THE PASSAGE OF TIME. TH PRESENTED IS A SIMPLIFICATION CONDITIONS ENCOUNTERED.	DIFFER AT OTHER AT THIS LOCATION HE DATA	Figure II-13

	OG		: т	.E0.					AT	LAS PROJECT NAME				ATLAS P	ROJECT NUM	BER	B-10
	JG		1	ĽÖ	ים ו		UNG		0	Compton College Pl	E Complex		STAR	10-575	75PW	eu	D-IU EET NO.
0	oton, C	alifor	nia										3/1/2		3/1/21	эн	14
DRILLI	NG CON	IPAN	IY							DRILL METHOD			0/1//	LOGGED BY		REVIEWE	
Baja ■ ■ DRILLI	Explora								POT				V /#		. GROUND W		
ר		JIPIVIE							80F	RING DIA. (in.) TOTA 56.5		0	ν. (π)		F DRILLING	.,	Elev -52.00 ft
		тно	D			N	OTES		0			0		4			
j 140-l	b Hamı	ner,	<u>30-iı</u>	n Drop			Hamm	ner l	Effic	iency = 73.9% N ₆₀ ~	1.23N _{SPT}				ILLING		1
		ш	Щ				≥										
ELEVATION (ft)	Ξ	SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT		MOISTURE (%)	DRY DENSITY (pcf)	밀	LOG								LAB
	DEPTH (ft)	< S ⁴	ЫS	R P	2 ⁶⁰	IST (%)	Шd	AP AP	ŏ		DESCR	IPTION AND (CLASS	SIFICATION			TESTS
		BULK	NS			M	ЛКY	0)								
ר ב צ		ш													<u> </u>		
			ODT	-	_					SANDY SILT (mottled.	ML), loose,	dark gray, moi	st, fine	e to medium (grained, mica	ceous,	
5_	_		SPT	5	6												
20/ 20/																	
e/e-f	_																
	_																
	_																
-25	25																
	_		CAL	7		23.7	94.6										WA 56.4%
	_																
Ë,																	
	-																
- - -	_																
00980																	
										Medium dense							
D)			SPT	13	16												AL
	_			10													
	-																
	_																
	_																
	<u> </u>																
2	35																
	_		CAL	18													
2																	
o	-																
	_																
0121	Ļ																
														/ 			
											OF THIS I	MARY APPLIES	T THE	TIME OF DR	LLING.		Figure
AILAS LUG REPUKI			4	T	-	1	C				LOCATIO	FACE CONDITIONS AND MAY C	HANG	E AT THIS LC			Figure
ASL	-	-			- /	AR	-	-	-		WITH TH PRESEN	E PASSAGE OF FED IS A SIMPLI	TIME.	THE DATA			TT 14
AIL												ONS ENCOUNT					II-14

LOG OF TEST BORING	Complex Deplecement	ATLAS PROJECT NUMBER 10-57575PW	B-10
SITE	Complex Replacement	END	SHEET NO.
DRILLING COMPANY	3/1/2		15 EWED BY
Baja Exploration Hollow Stem Au		KBH MJ	
	DEPTH (ft) GROUND ELEV. (ft)	DEPTH/ELEV. GROUND WATER	
CME-75 8 56.5	*		ft / Elev -52.00 ft
$\frac{1}{140-lb}$ Hammer, 30-in Drop Hammer Efficiency = 73.9% N ₆₀ ~1.		AT END OF DRILLING	
ELEVATION (f) (f) (f) (f) BULK SAMPLE DRIVE SAMPLE DRIVE SAMPLE BLOWS PER FOOT N ₆₀ N ₆₀ NOISTURE (%) (pcf) GRAPHIC LOG	DESCRIPTION AND CLASSI		LAB TESTS
SILTY SAND (S mottled.	M), medium dense, gray, moist,	fine grained, micaceous,	
	M), medium dense, dark gray, n	noist, fine to coarse grained,	
Coarse sand ler	se.		
	BORING TERMINATED A	T 56½ FEET	
ATLAS	THIS SUMMARY APPLIES ONLY OF THIS BORING AND AT THE SUBSURFACE CONDITIONS MA LOCATIONS AND MAY CHANGE WITH THE PASSAGE OF TIME. PRESENTED IS A SIMPLIFICATION CONDITIONS ENCOUNTERED.	TIME OF DRILLING. Y DIFFER AT OTHER AT THIS LOCATION THE DATA	Figure II-15

	OG		: т	FS.		NRI	NG		S PROJEC						ROJECT NUMBE	२	B-11
	00		-					Con	npton Co	llege F	E Complex	Replacem	ent STAR	10-575 T	75PW	SH	EET NO.
Com	pton, Ca	alifor	nia										3/1/		3/1/21		16
DRILLI	NG CON	/IPAN	Y						DRILL M					LOGGED BY	/ RI	VIEWE	
Baja	Explora	tion						POPING	Hollow	Stem	Auger AL DEPTH (ft			KBH	V. GROUND WAT		
								8	5 DIA. (IN.)	25			ELEV. (II)		OF DRILLING	=R (II)	
	LING ME	тно	D			N	OTES	0		20					F DRILLING		
140-	b Hamr	ner,	30-ir	n Drop			Hammer	Efficien	cy = 73.9	% N ₆₀ ~	-1.23N _{SPT}				RILLING		
	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC CRAPHIC	<u>-/</u> 61		of grass a	and to							LAB TESTS
	- - - - - - - - - - - - - - - - - - -		SPT	11	14			LL (af):(SILTY SA	ND (SI	M), loose, da	(Qyf): SILT	Y SAND (rained, micaceo		CON
	-		4	T	-7						OF THIS SUBSUR LOCATIO WITH TH PRESEN	BORING AN FACE CONE ONS AND MA	ID AT THE DITIONS M AY CHANG E OF TIME MPLIFICAT	ION OF THE	ILLING. T OTHER DCATION		Figure II-16

	OG		: т	ES		JRI	NG	ATLAS PR							ROJECT NUM	BER	B-11
	00		-					Compto	on Colle	ege PE Com	plex l	Replacement	STAR	10-575 T	75PW		SHEET NO.
Com	pton, Ca	alifor	nia										3/1/2		3/1/21		17
-	NG CON		Y						ILL ME					LOGGED BY			WED BY
Baja	Explora NG EQU	tion	NT							Stem Auger	[H (ft)	GROUND ELE	V (ft)	KBH	. GROUND W	MJ	ff)
CME							'	8	(III.)	25	(11)	0	v . (it)		FDRILLING		,
	ING ME	тно	D			N	OTES	0				0		TAT END O			
140-I	b Hamr	ner, :	30-ir	ם Drop			Hammer E	Efficiency =	73.9%	6 N ₆₀ ∼1.23N₅	SPT				ILLING		
	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	PER FOOT	N_{60}	GRAPHIC LOG						N AND CLASS					LAB TESTS
	-		SPT	17			gray	<i>r</i> ish brown,	, moist,	, fine to medi	um gi	<u>⊇vf</u>]: SILTY S/ ained, micace	ous. (d	continued)		n to	
			or i	1	9												
-25	-25									BORI	NG T	ERMINATED	AT 25	FEET			
	- 																
	-	-	4	T		4	5			OF SUE LOC WIT PRE	THIS E SURF ATIO H THI SENT	IMARY APPLIE: 30RING AND A FACE CONDITI(NS AND MAY C PASSAGE OF ED IS A SIMPL DNS ENCOUNT	T THE ONS M HANG TIME.	TIME OF DRI AY DIFFER A E AT THIS LC THE DATA ION OF THE	lling. T other Dcation		Figure II-17

	OG		: т	50		וסר		ATLAS	PROJEC	T NAME				ATLAS P	ROJECT NUM	BER	B-12
	UG			LO			NG	Com	pton Coll	ege PE	E Complex	Replacement	STAR	10-575	75PW		
	oton, Ca	alifor	nia										3/2/2		3/2/21		18
	NG CON	IPAN	Y						DRILL ME	THOD			0,2,1	LOGGED BY	0/2/21	REVIEW	
Baja I	Explora	tion	-						Hollow	Stem A	uger		V (64)	KBH		MJ	<u>, </u>
		IPIVIE						8 8	DIA. (IN.)	21.5		GROUND ELE			/. GROUND W)
		тно	D			N	OTES	0		21.5		0					
140-ll	b Hamr	ner,	30-ir	ו Drop			Hammer I	Efficienc	cy = 73.99	% N ₆₀ ∼1	1.23N _{SPT}						
	DEPTH (ff)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N_{60}	GRAPHIC LOG	2 ir		fAanhali				CLAS	SIFICATION			
			BULK	(****					4 inches of M), loose, b	own, moist, fir	ne to m	nedium araino	ed.		
	-						YO	UNG AL		-		D (SM), mediu		-		fine to n	nedium
-5	- 5						grai	ined.				<i>、 </i>					
	-		CAL	15													
			SPT	11	14		Bro	wn, incr	rease in fi	nes cor	ntent.						
	—15 - -		CAL	27			Gra	ayish bro	own, minc	r mottli	ng.						
	20 		SPT	5	6		SAI	NDY SIL	_T (ML), I	d		Dist, fine to me		-		oxidatic	
	/	-	1	T	-/		5				OF THIS I SUBSURF LOCATIO WITH THI PRESENT	BORNER APPLIES BORING AND A FACE CONDITIONS AND MAY C E PASSAGE OF FED IS A SIMPLI DNS ENCOUNT	T THE DNS M HANG TIME. IFICAT	TIME OF DRI AY DIFFER A E AT THIS LC THE DATA ION OF THE	lling. Tother Dcation		Figure II-18

	\sim		т			וחר		ATLAS	PROJEC	t nam	E			ATLAS P	ROJECT NUM	BER	D 42
	OG	OF		E2	I B(JRI	NG	Com	pton Col	lege P	E Complex	Replacemen		10-575			B-13
SITE													STAR		END		SHEET NO.
DRILLIN	ton, Ca	aliforn	ia r						DRILL ME				3/1/2	21 LOGGED BY	3/1/21		19 WED BY
-									Hollow					KBH		MJ	
	Explora		NT					BORING	DIA. (in.)		AL DEPTH (ft	GROUND EL	.EV. (ft)		. GROUND W		ft)
CME-								8	. ,	26.		0	. ,				
SAMPL		THOD)			N	OTES	-			-			T AT END O	F DRILLING		
140-1	o Hamr	ner, 3	0-in	n Drop			Hammer	Efficienc	y = 73.9°	% N ₆₀ ∼	-1.23N _{SPT}				RILLING		
	DEPTH (ft)	BULK	ō	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG	5 ii	nches o	f Concre	te	DESC	RIPTION AN	D CLAS	SIFICATION			
í S	_	×	ULK		4	****					SM), loose, o	rayish brown	, moist, i	fine to mediu	m grained.		
	- - -														-		
5 -5	5		SPT	9			<u>YO</u>	UNG AL	LUVIUM	(Qya):	SILTY SAM	ID (SM), med	ium den	ise, grayish b	prown, moist,	fine gr	ained.
	- - - 		CAL	9	11												
15	—15						<u>.</u> 				brown mois	t, fine to med	ium grai	ned micace		ottling	
	-	s	₿PT	6	7				- 1 (IVIE <i>)</i> , I			a, nine to filed	uun yrdi	neu, meaue			
320	-20								ID (SM)	mediu	m dense or	ay, moist, fine	to med	ium grained	micaceous	ninor m	. <u> </u>
	-		CAL	36					(OW),	mourd	40196, yi	ay, moiot, init		un granicu,			is coning.
6	25 		SPT	20	25		SA		 T (ML), ı	mediur	n dense, gr	ay, moist, fine	to medi	ium grained,	micaceous, n	ninor m	ottling.
Ť											BO	RING TERMIN		AT 25.5 FE	ET		
	_	+	ł	T	-	1	5				THIS SUI OF THIS SUBSUR LOCATIC WITH TH PRESEN	MMARY APPLI BORING AND FACE CONDIT INS AND MAY IE PASSAGE (TED IS A SIMF ONS ENCOUN	es onl' at the 'Ions M Chang DF Time. PLIFICAT	Y AT THE LOU TIME OF DR AY DIFFER A E AT THIS LO THE DATA ION OF THE	CATION ILLING. T OTHER OCATION		Figure II-19

	OG		: т	FS.		JRI	NG		S PROJEC						ROJECT NUM	BER	B-14
	00			L0			NG	Com	npton Coll	lege PE Cor	nplex l	Replacement	STAR	10-575	75PW		HEET NO.
Com	pton, Ca	alifor	nio										3/1/2		3/1/21	S	20
	NG CON	/IPAN	IY III						DRILL ME	THOD			0/1/2	LOGGED BY		REVIEW	
	Explora								Hollow	Stem Auger				KBH		MJ	
L	NG EQL	JIPME	ENT						6 DIA. (in.)		TH (ft)	GROUND ELE			/. GROUND W		1
CME	-75 . ING ME	тно	D			N	IOTES	8		5		0			of Drilling		
140-1	b Hamr			n Drop				Ffficiend	cv = 73 99	% N₀₀~1.23N	lont			¥ AFTER DF			
											591						
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG		inches	of grass	DESCR and topsoil		N AND CLASS	SIFICA	ΓΙΟΝ			LAB TESTS
	-						······································	.L (af):S	-	LT (ML), 100		edium brown, c	lry, fine	to medium	grained,		— RV WA (53.7%)
	2.5 - - - -		CAL	17			YO bro	UNG AL	LLUVIAL , fine to m	edium graine	ed, mic	<u>Qyf</u>): SILTY S/ caceous, minol	r rootle	ts.	dense, grayi	sh	
	0.0									BOI	RING 1	FERMINATED	AT 5 F	EET			
	- - 7.5 - -																
		-	4	Ŧ	-/	4	5			OF SU LO WI PR	THIS E BSURF CATIO TH THI ESENT	IMARY APPLIE BORING AND A FACE CONDITIONS AND MAY C E PASSAGE OF FED IS A SIMPL DNS ENCOUNT	T THE ONS M/ HANGI TIME.	TIME OF DR AY DIFFER A E AT THIS LC THE DATA	lling. T other Dcation		Figure II-20

1			: т			וסר		ATLA	S PROJEC	T NAM	E			ATLAS P	ROJECT NUMI	BER	P-4
	OG		- 1	<u> </u>		JRI	NG	Con	npton Col	lege P	E Complex	Replacement		10-575			
SITE		-1:6											STAR		END	SH	EET NO.
	pton, Ca NG CON	alitor IPAN	nia IY						DRILL ME	ETHOD	1		3/1/	21 LOGGED BY	3/1/21	REVIEWE	21 D BY
-	Explora								Hollow					KBH		MJ	
	NG EQU		ENT					BORING	G DIA. (in.)	TOTA	AL DEPTH (ft)	GROUND ELE	V. (ft)	DEPTH/ELE\	. GROUND W	ATER (ft)	
CME								8		5		0			of Drilling _		
	LING ME			_			IOTES										
140- E	b Hamr	ner, : I		n Drop			Hammer	Efficien	cy = 73.9°	% N ₆₀ ∼	-1.23N _{SPT}			¥ AFTER DR	ILLING		
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	2 60	GRAPHIC LOG		nches	of grass a			N AND CLASS	SIFICA	TION			LAB TESTS
						17. 11			or gruce c		peen						
	-		- - - - - - - - - - - - - - - - - - -				Ell	L L (af) :: ose, me	SILTY SA dium brov	ND to wn, dry	SANDY SIL	.T(SM/ML) wit dium grained,	h thin micac	lens of CLAY eous, rootlet	/(CL), s.		- RV PD
	- 2.5 - - - -		SPT	10	12		YC	DUNG A Dwn, dry	LLUVIAL , fine to m	FAN I	grained, mid				dense, grayis	sh	-
-5.0	5.0										BORING T	FERMINATED	AT 5	FEET			
	- - 7.5 - -																
		-	4	T	57	4	5				OF THIS SUBSURF LOCATIO WITH TH PRESENT	IMARY APPLIE BORING AND A FACE CONDITI NS AND MAY C E PASSAGE OF "ED IS A SIMPL DNS ENCOUNT	T THE ONS M HANG TIME.	TIME OF DRI AY DIFFER A E AT THIS LC THE DATA ION OF THE	lling. Tother Dcation		Figure II-21

APPENDIX III LABORATORY TEST PROCEDURES AND TEST RESULTS

The laboratory testing was performed in general accordance with applicable procedures and standards of the American Society for Testing and Materials (ASTM) and California Test Methods. Unless otherwise noted, the tests were performed at Atlas laboratories in Riverside and San Diego, California. Based on our review of the laboratory data, the undersigned engineers concur with and accept the laboratory testing results. Brief descriptions of the testing are presented in the following sections.

MOISTURE CONTENT AND DRY DENSITY: The moisture content and dry unit weight were determined for selected soil samples in general accordance with ASTM D2216 and ASTM D2937, respectively. The moisture content and dry unit weight are presented on the boring logs at the corresponding sample depths.

SIEVE ANALYSIS: Selected soil samples were tested to determine the quantitative determination of the distribution of particle sizes in soils (particle sizes larger than 75 micrometers) in general accordance with ASTM D422. The results of the Sieve analyses are presented in this Appendix.

WASH SIEVE ANALYSIS: Selected soil samples were tested to determine the percent fines (the percentage of soil passing the Standard No. 200 sieve) in general accordance with ASTM D1140. The results of the wash sieve analyses are presented at the appropriate depths on the boring logs.

DIRECT SHEAR: Direct shear tests were performed on ring and remolded samples in general accordance with ASTM D3080 to evaluate the shear strength of the soils. Samples were tested in a saturated state. Both peak and ultimate shear strengths were measured and reported in the test plots. Test results are attached in this appendix.

CORROSIVITY TESTS: Corrosivity tests were performed on a selected bulk sample to evaluate minimum resistivity, pH, water-soluble sulfates and chlorides (CTMs 643, 417 and 422 respectively). Test results are attached in this appendix.

EXPANSION INDEX TEST: Expansion Index tests were performed on selected bulk samples in general accordance with ASTM D4829 to evaluate the expansion potential of the on-site soils. Test results are attached in this appendix.

MAXIMUM DENSITY TESTS: The maximum dry density and optimum moisture content of a representative bulk soil sample were determined in accordance with ASTM D1557. Test results and a graphical plot of maximum density vs. optimum moisture content are attached in this appendix.

ATTERBERG LIMITS: Liquid Limit, Plastic Limit and Plasticity Index of the tested samples were determined in accordance with ASTM D4318. Test results and a graphical plot are attached in this appendix.

R-VALUE: R-Value of the tested samples were determined in accordance with ASTM D2844. Test results are presented in this appendix.

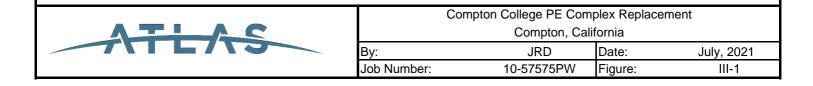
	BERG LIMITS TM D4318		
SAMPLE LOCATION	LL	PL	PI
B-4 at 251/2 to 261/2 Feet	36	24	12
B-4 at 451/2 to 461/2 Feet	NP	NP	NP
B-10 at 6 to 6½ Feet	NP	NP	NP
B-10 at 30½ to 31½ Feet	34	26	8

Modified Proctor

ASTM D1557

SAMPLE LOCATION	Optiumum Moisture (%)	Maximum Dry Density (pcf)
B-3 at 1/2 to 31/2 feet	13.9	115.7

Percent Finer than No. 200 Sieve


ASTM D1140

SAMPLE LOCATION	FINES CONTENT (%)
B-4 at 21 Feet	65.1
B-4 at 31 Feet	89.7
B-4 at 51 Feet	66.4
B-10 at 56.4 Feet	56.4
P-4 at 1 to 3 ¹ / ₂ Feet	50.5

R-VALUE

ASTM D2844

SAMPLE LOCATION	R-Value
B-14 at 1 to 2½ Feet	13
P-4 at 1 to 3 ¹ / ₂ Feet	50

EXPANSION INDEX

ASTM D4829

SAMPLE LOCATION	DESCRIPTION	EXPANSION INDEX
B-4 at 1/2 to 31/2 feet	<u>FILL (af)</u> : SANDY SILT	9
B-10 at 1 to 5 feet	<u>FILL (af)</u> : SILTY SAND	2

Classification of Expansive Soil¹

EXPANSIVE INDEX	POTENTIAL EXPANSION	
1-20	Very Low	
21-50	Low	
51-90	Medium	
91-130	High	
Above 130	Very High	

1. ASTM - D4829

RESISTIVITY, pH, SOLUBLE CHLORIDE and SOLUBLE SULFATE

pH & Resistivity (Cal 643, ASTM G51)

Soluble Chlorides (Cal 422)

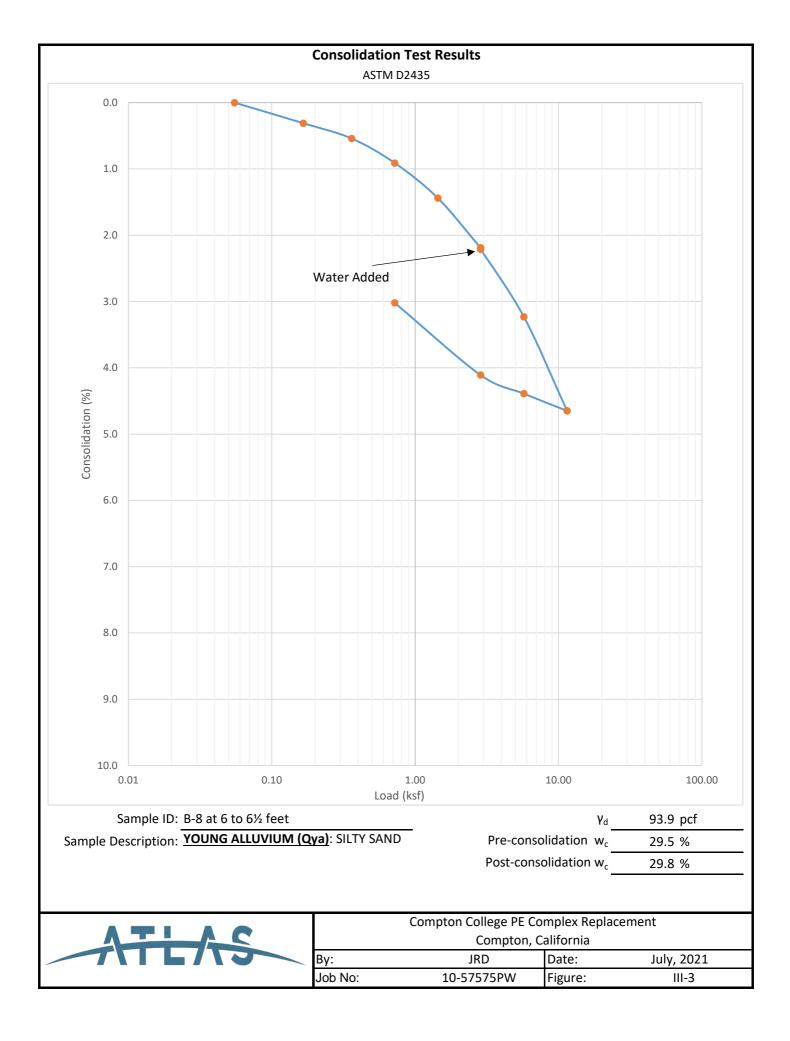
Soluble Sulfate (Cal 417)

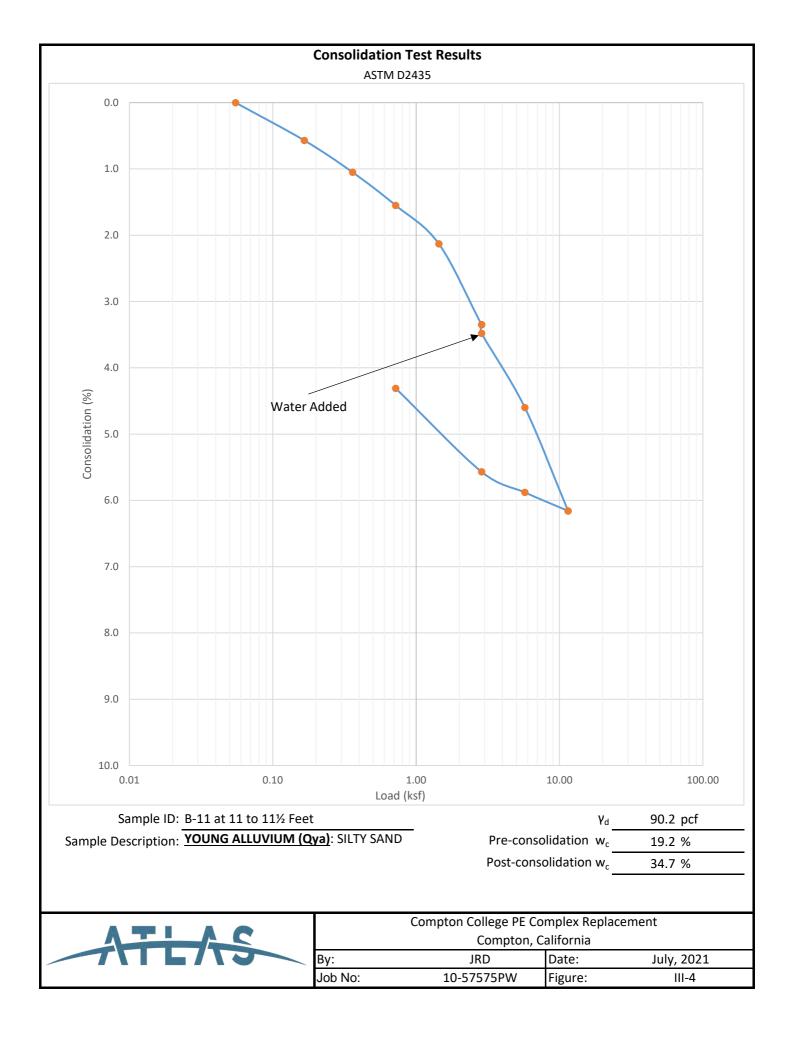
SAMPLE LOCATION	RESISTIVITY (Ω-cm)	рН	CHLORIDE (%)	SULFATE (%)
B-4 at 1/2 to 31/2 Feet	2970	8.78	0.004	0.005
B-10 at 1 to 5 Feet	2940	8.19	0.003	0.002

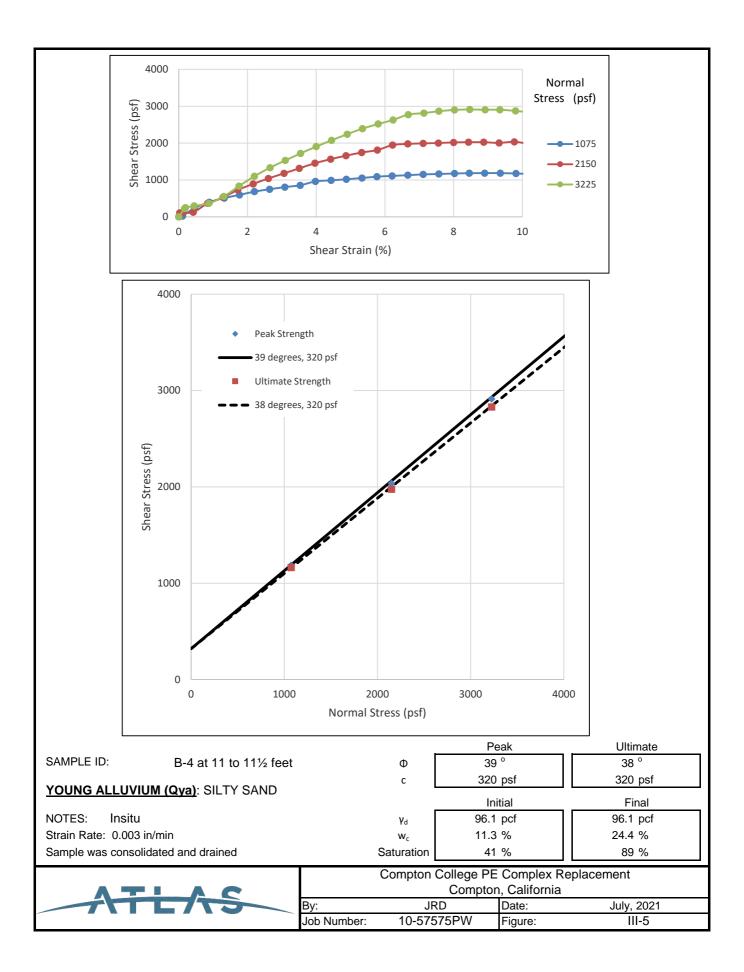
Water-Soluble Sulfate Exposure²

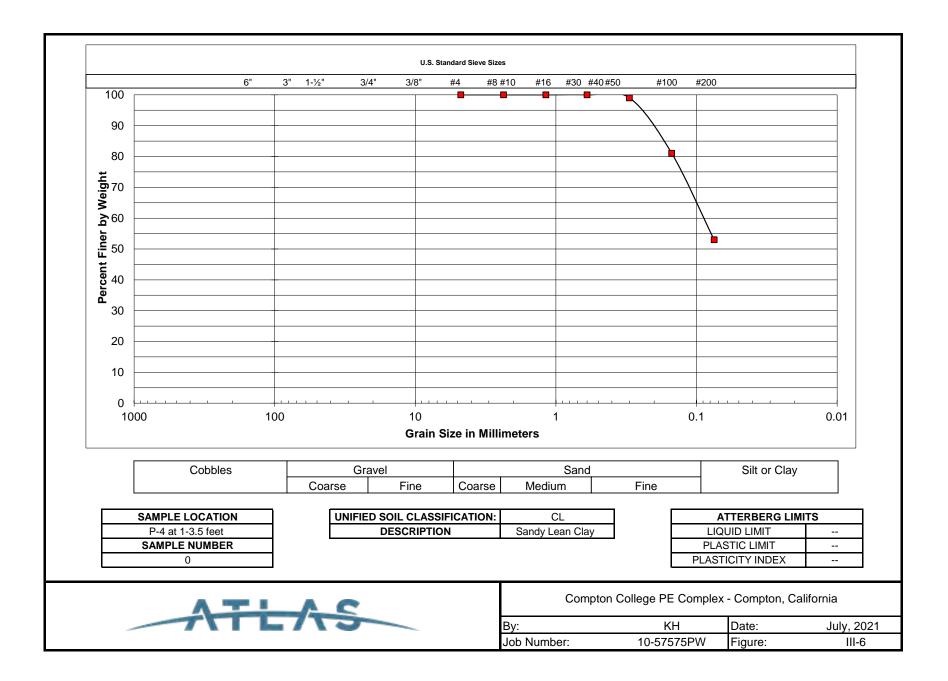
Water-Soluble Sulfate (SO₄) in soil (percent by weight)	Exposure Severity	Exposure Class	e Cement Type (ASTM C150)		Min. f _c ' (psi)
SO ₄ < 0.10	N/A	S0	S0 No type restriction		2,500
0.10 ≤ SO ₄ < 0.20	Moderate	S1	П	0.50	4,000
$0.20 \le SO_4 \le 2.00$	Severe	S2	V	0.45	4,500
SO ₄ > 2.00	Very Severe	S3	3 V plus pozzolan or slag cement (4,500

2. Modified from ACI 318-14 Table 19.3.1.1 and Table 19.3.2.1

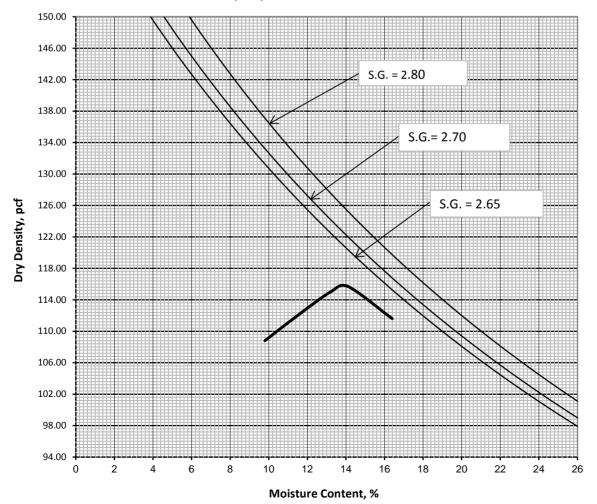

Corrosivity Ratings Based on Soil Resistivity³


Soil Resistivity (Ω cm)	Corrosivity Rating
> 20,000	Essentially noncorrosive
10,000 to 20,000	Mildly corrosive
5,000 to 10,000	Moderately corrosive
3,000 to 5,000	Corrosive
1,000 to 3,000	Highly corrosive
<1,000	Extremely corrosive

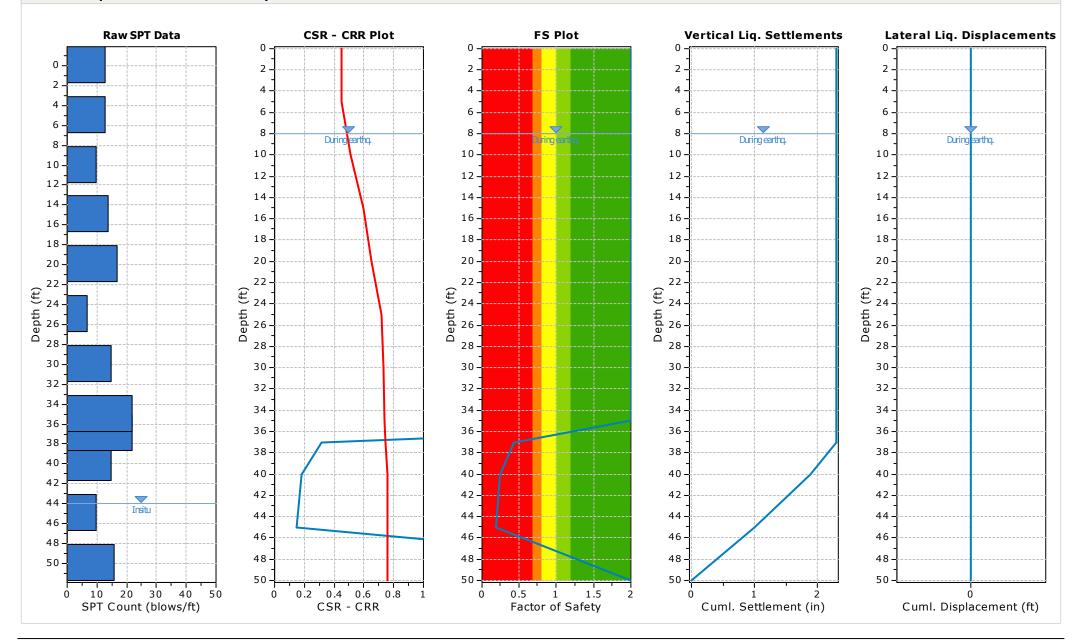

3. Roberge (2008), Corrosion Engineering, Principles and Practice



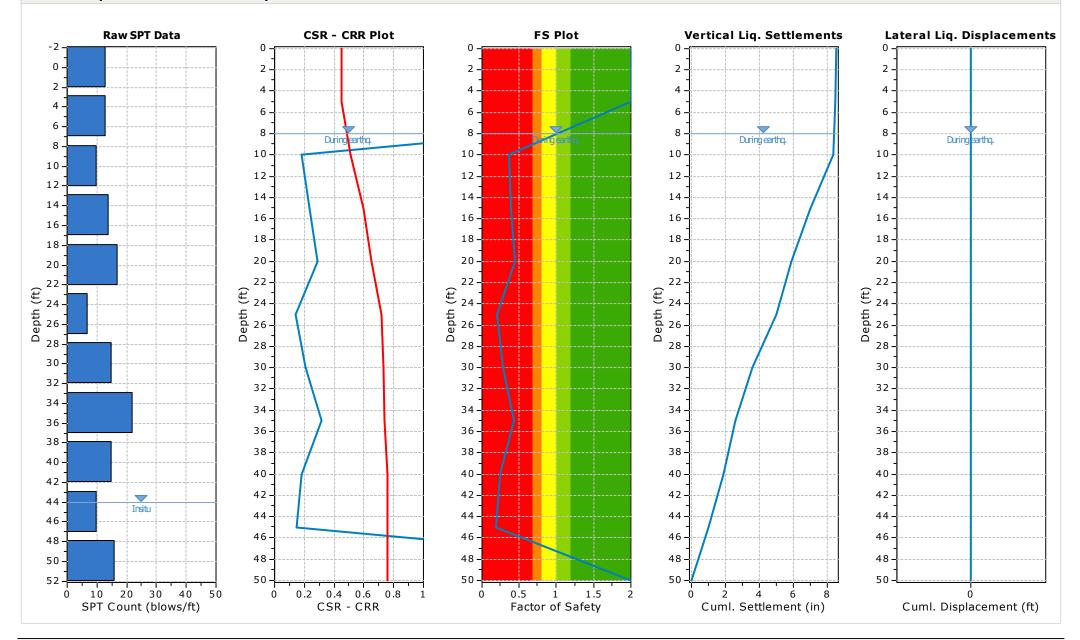
	Compton College PE Complex Replacement					
	Compton, California					
By:		JRD	Date:	July, 2021		
Job N	lumber:	10-57575PW	Figure:	III-2		

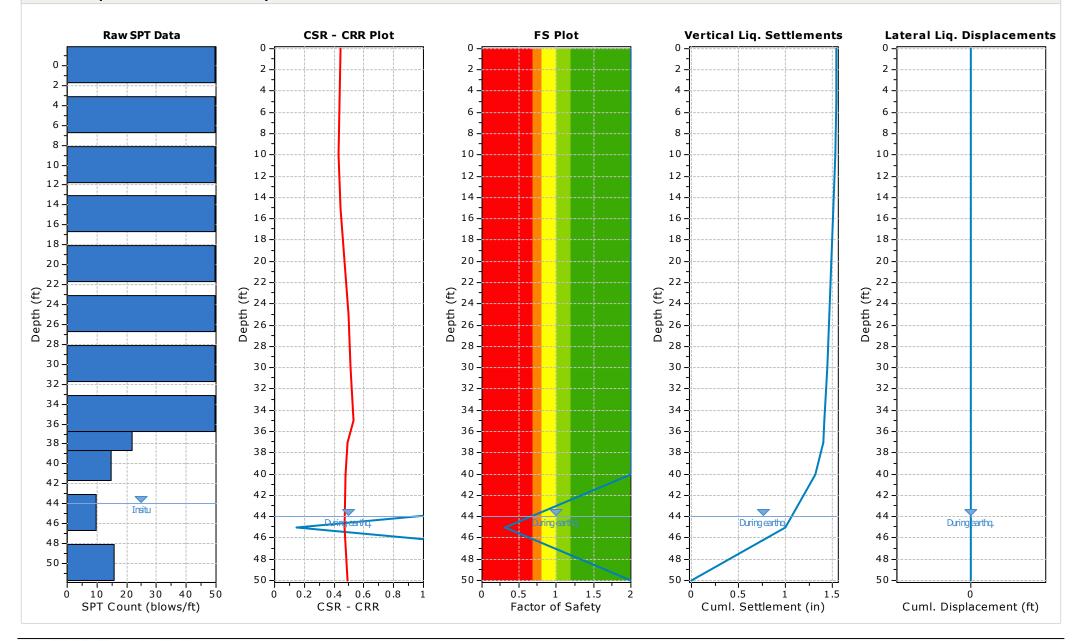


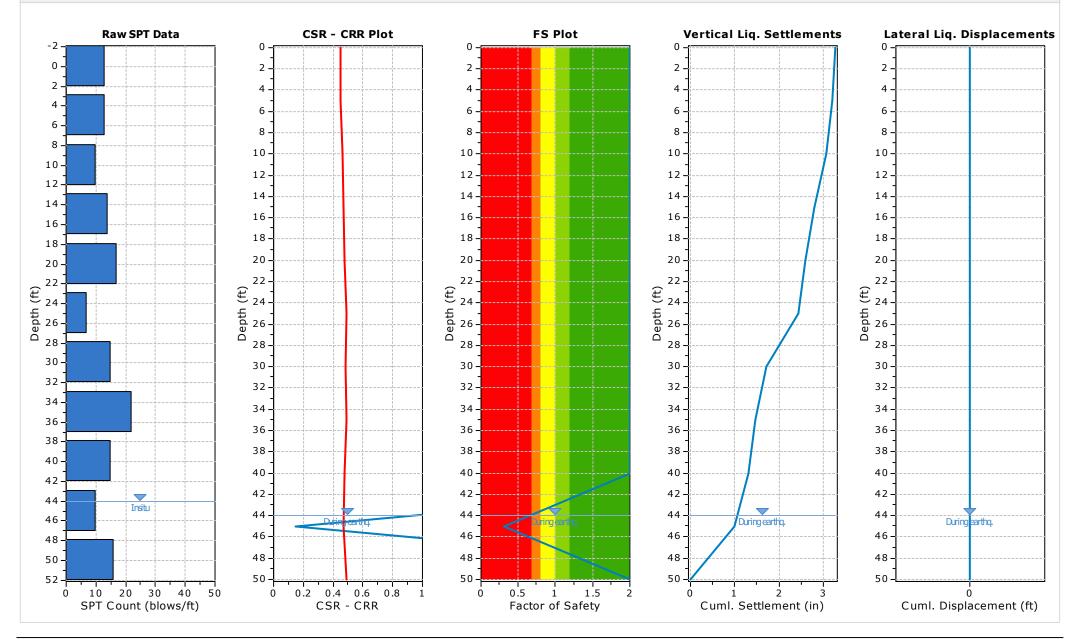
14457 Meridian Parkway | Riverside, California 92518 P: 951.697.4777 | F: 951.888.3393 | www.oneatlas.com

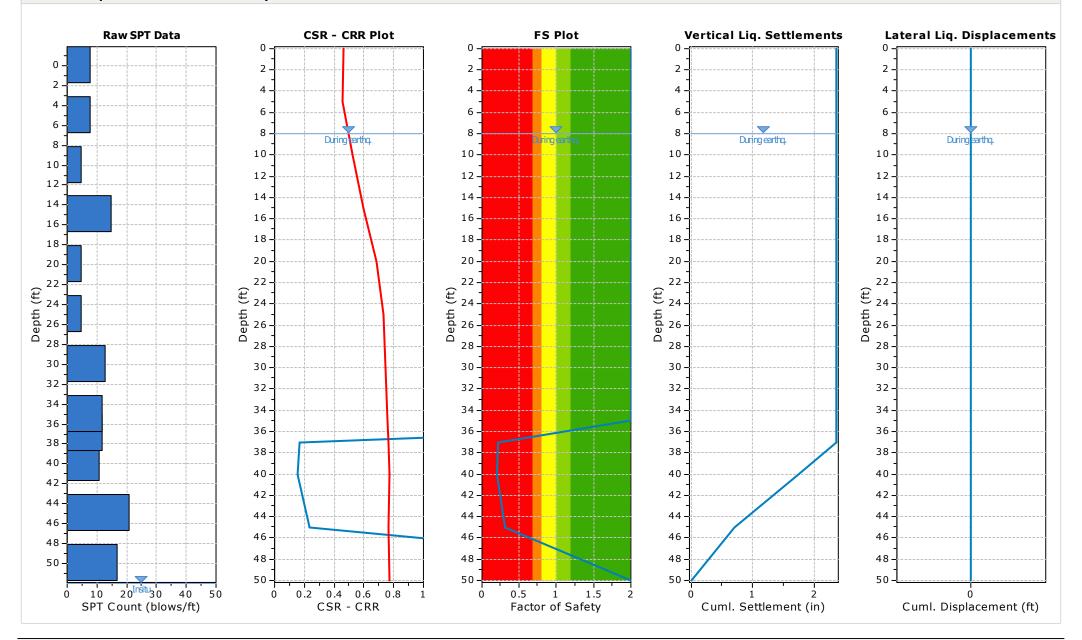

LABORATORY COMPACTION CHARACTERISTICS OF SOIL USING MODIFIED EFFORT, ASTM D 1557

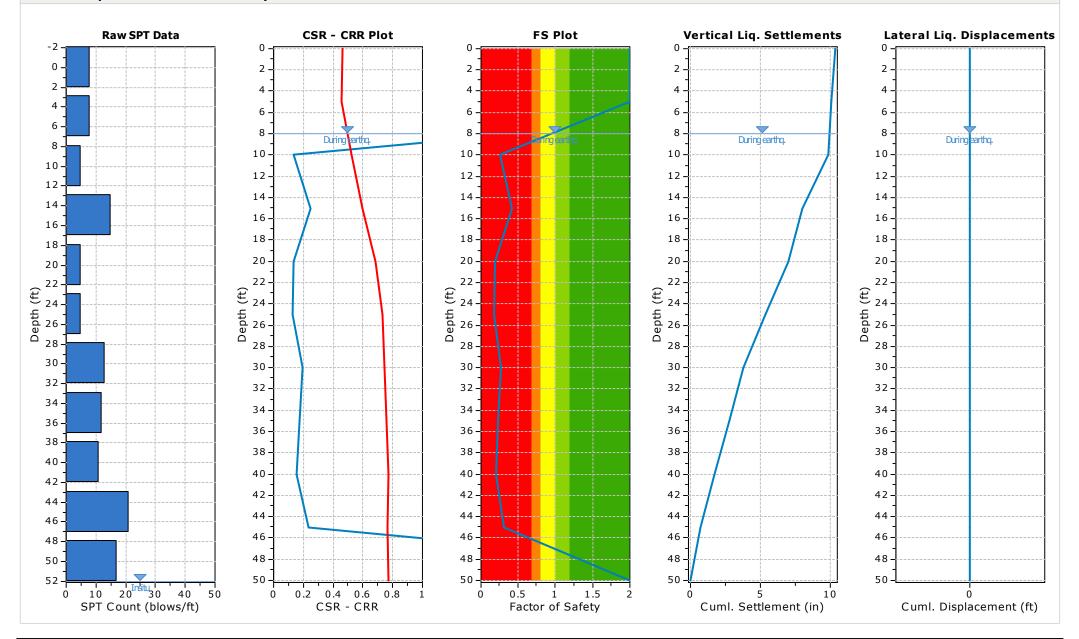
Tested For:Compton College Community District1111 East Artessia Blvd.Compton College, CA 90221		Project: Compton College PE Complex 1111 E. Artesia Blvd. Compton, CA 90221			
				DSA File No.: NA Dsa App No.: NA	
Date:	March 12, 20	21	Atlas Technical Consulta	ants Project No.: 1057575PW	
Lab Sample	No.:	Sample 1			
Visual Class.	:	Brown Silty fine SAND	Test	Results:	
Sample Sour	ce:	B-3 at 0.5 - 3.5 feet	Max	imum Dry Density, pcf:	115.7
Method of T	est:	ASTM D 1557 - Method A	Opti	mum Moisture Content, %:	13.9

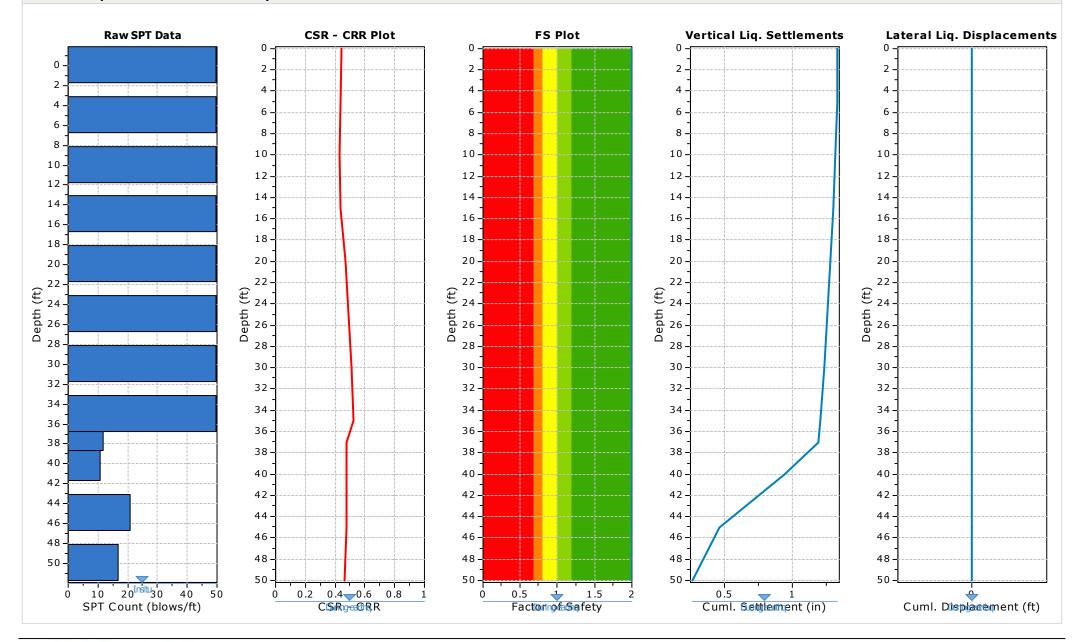

Maximum Density - Optimum Moisture Content, ASTM D 1557

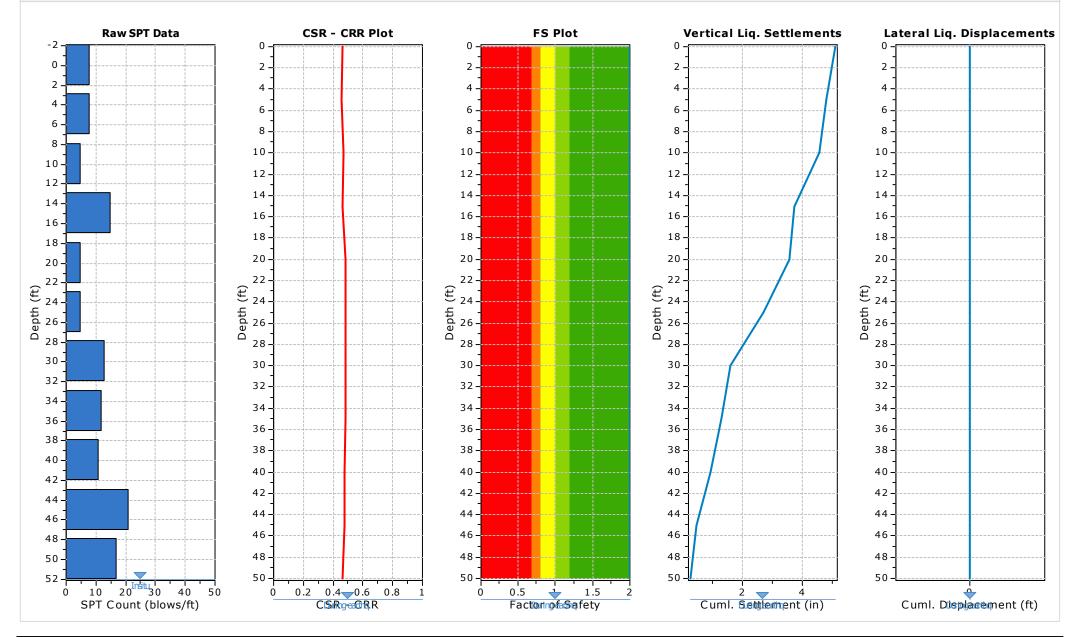

APPENDIX IV LIQUEFACTION RESULTS







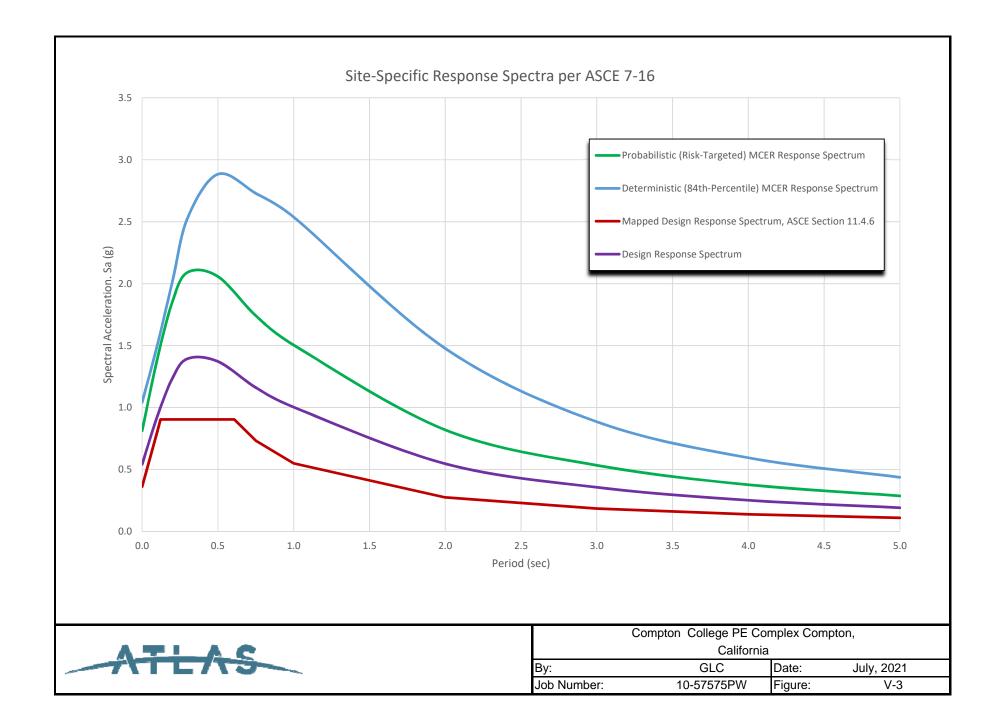




APPENDIX V SITE-SPECIFIC GROUND MOTION HAZARD ANALYSIS RESULTS

SITE-SPECIFIC GROUND MOTION ANALYSIS (ASCE 7-16)

Project:	Compton Community College PE Complex	Latitude:	33.87696	deg	Calculated By:	GLC
Client:	Compton Community College District	Longitude:	-118.21110	deg	Checked By:	RS
Job No:	10-57575PW	Vs ₃₀ :	259	m/s	Date:	January, 2021


	PROBABILISTIC (RISK-TARGETED) GROUND MOTION ANALYSIS			DETERMINISTIC (84TH-PERCENTILE) GROUND MOTION ANALYSIS			CODE-BASED (LOWER LIMIT) ASCE 7-16 SECTION 11.4.6		SITE-SPECIFIC DESIGN RESPONSE			
Period T (sec)	Uniform Hazard Ground Motion (g)	Risk Targeted Ground Motion (g)	Maximum Direction Scale Factor	Maximum Directional Probabilistic Sa (g)	84th Percentile Spectral Accelaration (g)	Maximum Direction Scale Factor	Maximum Directional Deterministic Sa (g)	Code Based S _a (g)	80% of Code Based S _a (g)	Design S _{aM} (g)	Design S _a (g)	T x S _a (T>1s)
PGA	0.774	0.738	1.1	0.812	0.947	1.1	1.042	0.452	0.361	0.812	0.541	
0.10	1.302	1.265	1.1	1.392	1.366	1.1	1.503	1.008	0.807	1.392	0.928	
0.20	1.725	1.686	1.1	1.855	1.834	1.1	2.017	1.129	0.903	1.855	1.236	
0.30	1.952	1.859	1.125	2.091	2.249	1.125	2.530	1.129	0.903	2.091	1.394	
0.50	1.882	1.751	1.175	2.057	2.454	1.175	2.883	1.129	0.903	2.057	1.372	
0.75	1.536	1.407	1.2375	1.741	2.205	1.2375	2.729	0.916	0.733	1.741	1.161	
1.00	1.268	1.157	1.3	1.504	1.952	1.3	2.538	0.687	0.549	1.504	1.003	1.003
2.00	0.672	0.607	1.35	0.819	1.094	1.35	1.477	0.343	0.275	0.819	0.546	1.093
3.00	0.424	0.381	1.4	0.533	0.632	1.4	0.885	0.229	0.183	0.533	0.356	1.067
4.00	0.290	0.260	1.45	0.377	0.410	1.45	0.595	0.172	0.137	0.377	0.251	1.005
5.00	0.213	0.191	1.5	0.287	0.291	1.5	0.437	0.137	0.110	0.287	0.191	0.955

INPUT PARAMETERS - SEAOC (https://seismicmaps.org/)			<u>SITE-SI</u>	ECIFIC DI	ESIGN PARAMETERS	
Site Class=	D		S _{DS} =	1.255	90% of max S _a (ASCE 7-16 Sect 21.4)	
F _a =	1.000	Short Period Site Coefficient	S _{MS} =	1.882	MCE _R , 5% Damped, adjusted for Site Class	
S _S =	1.694	Mapped MCE _R , 5% Damped at T=0.2s	S _{D1} =	1.093	Design, 5% Damped, at T=1s (Sect 11.4.5)	
S ₁ =	0.606	Mapped MCE _R , 5% Damped at T=1s	S _{M1} =	1.639	MCE_{R} , 5% Damped, at T=1s, adjusted for Site	
S _{DS} =	1.129	Design, 5% Damped at Short Periods	F _a =	1.000	Short Period Site Coefficient (7-16 Sect 21.3)	
S _{MS} =	1.694	The MCE _R , 5% Damped at Short Periods	F _v =	2.500	Long Period Site Coefficient (7-16 Sect 21.3)	
T _L (sec)=	8.0	Long Period Transition (Sect 11.4.6)	S _S =	1.882	MCE _R , 5% Damped at T=0.2s	
F _{PGA} (g)=	1.1	Site Coefficient for PGA	S ₁ =	0.656	MCE _R , 5% Damped at T=1s	
PGA _M (g)=	0.802		PGA _{Probabilistic} (g)=	0.774	Peak Ground Acceleration, Probabilistic	
F _v =	1.700	Used Only for Calculation of T_o and T_s	PGA _{Deterministic} (g)=	0.947	Peak Ground Acceleration, Deterministic	
S _{M1} =	1.030		F _{PGA} (g)=	1.1	Site Coefficient for PGA, when PGA = 0.5g	
S _{D1} =	0.687	Design, 5% Damped at T=1s	0.5*F _{PGA} (g)=	0.550	OK (Check PGA _{Deterministic} > 0.5 x F _{PGA})	
T _o (sec)=	0.122	Defined in ASCE 7-16 Sect 11.4.6	0.8*PGA _M (g)=	0.642	PGA_{M} (g) (Determined from ASCE 7-16 Eq. 11.8-1)	
T _s (sec)=	0.608	Defined in ASCE 7-16 Sect 11.4.6	Site Specific PGA (g) =	0.774	(Check PGA _{Site Specific} > 0.8 x PGA _M)	

	C	ompton College PE C		
ATE713	By:	GLC	Date:	July, 2021
	Job Number:	10-57575PW	Figure:	V-1

DETERMINISTIC (84TH-PERCENTILE) GROUND MOTION ANALYSIS											
Fault		Period, T (sec)									
Fault	PGA	0.10	0.20	0.30	0.50	0.75	1.00	2.00	3.00	4.00	5.00
Newport-Inglewood Alt 1 (M=7.15)	0.734	1.101	1.499	1.770	1.845	1.632	1.468	0.857	0.568	0.388	0.277
Newport-Inglewood Alt 2 (M=7.15)	0.762	1.133	1.537	1.829	1.923	1.716	1.548	0.905	0.602	0.410	0.291
Compton (M=7.45)	0.947	1.366	1.834	2.249	2.454	2.205	1.952	1.094	0.632	0.396	0.274
Palos Verdes (M=7.38)	0.472	0.757	1.054	1.186	1.156	0.970	0.843	0.491	0.333	0.240	0.178
Puente Hills - Santa Fe Springs (M=6.61)	0.618	0.965	1.341	1.559	1.507	1.229	1.040	0.511	0.291	0.175	0.116
84th Percentile Spectral Accelaration	0.947	1.366	1.834	2.249	2.454	2.205	1.952	1.094	0.632	0.410	0.291

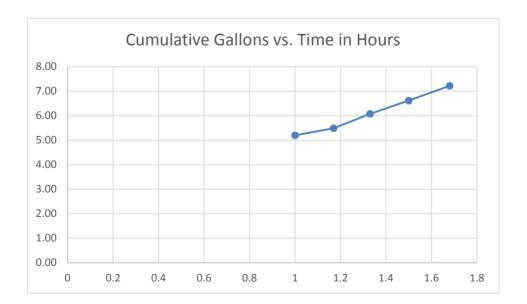
	Compton College PE Complex Compton,
ATLAC	California
	By: GLC Date: July, 2021
	Job Number: 10-57575PW Figure: V-2

APPENDIX VI INFILTRATION TEST RESULTS

We performed four borehole percolation test (BP-1 to BP-4) at different depths in general conformance with the Administrative Manual, County of Los Angeles Department of Public Works Geotechnical and Materials Engineering Division. Figures VI-1 to VI-8 present the results of the testing.

Shallow Borehole Percolation Testing Field Log

Project Name:	PE Complex Replace	ement - Compton Coll	Project No.:	10-57575PW
Project Location:	Compton, California		Boring Test Number:	BP-1
Tested by:	КН		Diameter of Boring (in)	8
Liquid Description:	Water		Depth of Boring (ft):	5
Measurement Method:	Sounder		Water Remaining:	No
Depth to Test (ft):	4			


Reading Number	Time Start/End (hh:mm)	Time Interval Between Readings	Total Time Elapse (HR)	Volume of Water Needed per Reading (gal)	Cumulative Volume (gal)	Notes/Comments Head Drop
1	3:08 PM 3:18 PM	0:10	0.17	2.017	2.02	3
2	3:19 PM 3:29 PM	0:10	0.33	0.788	2.81	4 7/8
3	3:34 PM 3:44 PM	0:10	0.50	0.725	3.53	2 1/2
4	3:46 PM 3:56 PM	0:10	0.67	0.464	3.99	2 7/8
5	3:58 PM 4:08 PM	0:10	0.83	0.648	4.64	2 1/4
6	4:08 PM 4:18 PM	0:10	1.00	0.555	5.20	3/8
7	4:19 PM 4:29 PM	0:10	1.17	0.296	5.49	3 1/8
8	4:30 PM 4:40 PM	0:10	1.33	0.582	6.08	4 1/2
9	4:41 PM 4:51 PM	0:10	1.50	0.547	6.62	4 1/8
10	4:52 PM 5:03 PM	0:11	1.68	0.596	7.22	3 3/4

Shallow Borehole Percolation Testing Field Log

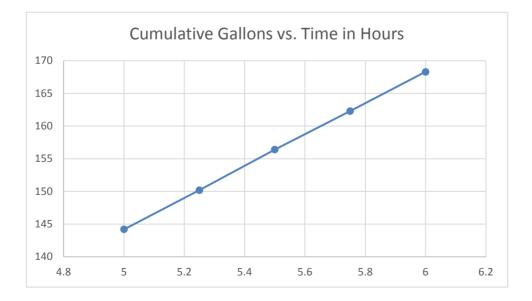
Project Name:	PE Complex Replaceme	nt - Compton College	Project No.:	10-57575PW
Project Location:	Compton, California		Boring Test Number:	BP-1
Tested by:	КН		Diameter of Boring (in)	8
Liquid Description:	Domestic Water	•	Depth of Boring (ft):	5
Measurement Method	l: Sounder	•	Water Remaining:	No
		•		

Water Depth	Raw Flow Rate	0.4 CF/HR
Reading	Raw Measured Rate	0.2 FT/HR
4 ft	Reduction Factors	
Wetted Perim	Drywell Perc Test	2
2.10 ft	Site Variability	2
Wetted Bottom	Long-Term Siltation	3
0.35 sf		
Wetted Area	Total Reduction	12
2 sf	Design Infiltration Rat	0.01 FT/HR
Gravel Area		0.16 in/hr
0.21 sf		
Gravel Porosity		
0.3		

Voids

0.28 cf/ft

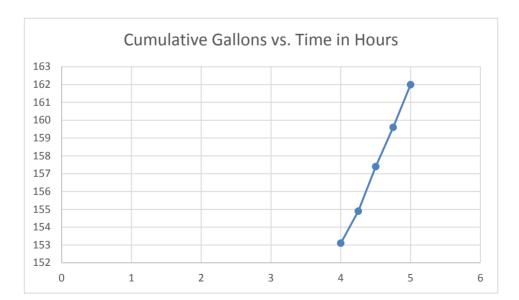
Project Name:	PE Complex Replacer	nent - Compton Colle	Project No.:	10-57575PW
Project Location:	Compton, California		Boring Test Number:	BP-2
Tested by:	LM		Diameter of Boring (in)	8
Liquid Description:	Water		Depth of Boring (ft):	25
Measurement Method:	Sounder		Water Remaining:	No
Depth to Test (ft):	6			


Reading Number	Time Start/End (hh:mm)	Time Interval Between Readings	Total Time Elapse (HR)	Volume of Water Needed per Reading (gal)	Cumulative Volume (gal)	Notes/Comments
1	9:40 AM 9:55 AM	0:15	0.25	11.6	11.6	
2	9:55 AM 10:10 AM	0:15	0.50	10.1	21.7	
3	10:10 AM 10:25 AM	0:15	0.75	9	30.7	
4	10:25 AM 10:40 AM	0:15	1.00	8.6	39.3	
5	10:40 AM 10:55 AM	0:15	1.25	7.8	47.1	
6	10:55 AM 11:10 AM	0:15	1.50	7.8	54.9	
7	11:10 AM 11:25 AM	0:15	1.75	7.1	62	
8	11:25 AM 11:40 AM	0:15	2.00	6.8	68.8	
9	11:40 AM 11:55 AM	0:15	2.25	6.8	75.6	
10	11:55 AM 12:10 PM	0:15	2.50	6.6	82.2	
11	12:10 PM 12:25 PM	0:15	2.75	6.2	88.4	
12	12:25 PM 12:40 PM	0:15	3.00	6.2	94.6	
13	12:40 PM 12:55 PM	0:15	3.25	6.4	101	
14	12:55 PM 1:10 PM	0:15	3.50	6.3	107.3	
15	1:10 PM 1:25 PM	0:15	3.75	6.2	113.5	
16	1:25 PM 1:40 PM	0:15	4.00	6.2	119.7	
17	1:40 PM 1:55 PM	0:15	4.25	6.1	125.8	
18	1:55 PM 2:10 PM	0:15	4.50	6.2	132	
19	2:10 PM 2:25 PM	0:15	4.75	6.2	138.2	
20	2:25 PM 2:40 PM	0:15	5.00	6	144.2	
21	2:40 PM 2:55 PM	0:15	5.25	6	150.2	
22	2:55 PM 3:10 PM	0:15	5.50	6.2	156.4	
23	3:10 PM 3:25 PM	0:15	5.75	5.9	162.3	
24	3:25 PM 3:40 PM	0:15	6.00	6	168.3	

Project Name:	PE Complex Replacement - Compton Colle	ege Project No.:	10-57575PW
Project Location:	Compton, California	Boring Test Number:	BP-2
Tested by:	LM	Diameter of Boring (in) 8
Liquid Description:	Domestic Water	Depth of Boring (ft):	25
Measurement Metho	d: Sounder	Water Remaining:	No

Water Depth	Raw Flow Rate	3 2	CF/HR
			•
Reading	Raw Measured Rate	0.08	FT/HR
6 ft	Reduction Factors		
Wetted Perim	Drywell Perc Test	2	
2.10 ft	Site Variability	2	
Wetted Bottom	Long-Term Siltation	3	
0.35 sf	•		
Wetted Area	Total Reduction	12	
40 sf	Design Infiltration Rat	0.007	FT/HR
Gravel Area		0.08	in/hr
0.29 sf			
0.29 sf Gravel Porosity			
Gravel Porosity]		

0.26 cf/ft


Project Name:	PE Complex Replacen	nent - Compton Colle _l Project No.:	10-57575PW
Project Location:	Compton, California	Boring Test Number:	BP-3
Tested by:	КН	Diameter of Boring (in)	8
Liquid Description:	Water	Depth of Boring (ft):	25
Measurement Method:	Sounder	Water Remaining:	No
Depth to Test (ft):	6	-	

0.17 AM		(HR)	Water Needed per Reading (gal)	Cumulative Volume (gal)	Notes/Comments
8:15 AM 8:30 AM	0:15	0.25	72.61	72.6	
8:30 AM 8:45 AM	0:15	0.50	38.31	110.9	
8:45 AM 9:00 AM	0:15	0.75	7.666	118.6	
9:00 AM 9:15 AM	0:15	1.00	4.728	123.3	
9:15 AM 9:30 AM	0:15	1.25	3.737	127.1	
9:30 AM 9:45 AM	0:15	1.50	3.489	130.5	
9:45 AM 10:00 AM 0:15	1.75	3.09	133.6		
10:00 AM 10:15 AM	0:15	2.00	2.362	136.0	
10:15 AM 10:30 AM	0:15	2.25	1.977	138.0	
10:30 AM	0:15	2.50	2.666	140.6	
11 10:45 AM 0:15		2.75	1.768	142.4	
11:00 AM	0:15	3.00	2.227	144.6	
11:15 AM	0:15	3.25	1.821	146.5	
11:30 AM	0:15	3.50	1.988	148.4	
11:45 AM	0:15	3.75	2.613	151.1	
12:00 PM	0:15	4.00	1.999	153.1	
12:15 PM	0:15	4.25	1.857	154.9	
12:30 PM	0:15	4.50	2.487	157.4	
12:45 PM	0:15	4.75	2.248	159.6	
1:00 PM	0:15	5.00	2.371	162.0	
	8:30 AM 8:45 AM 9:00 AM 9:00 AM 9:15 AM 9:15 AM 9:15 AM 9:30 AM 9:30 AM 9:45 AM 10:00 AM 10:00 AM 10:15 AM 10:15 AM 10:15 AM 10:30 AM 10:30 AM 10:45 AM 10:45 AM 11:00 AM 11:15 AM 11:15 AM 11:15 AM 11:25 AM 11:45 AM 11:45 AM 11:45 AM 11:45 AM 11:45 AM 11:45 AM 11:45 PM 12:15 PM 12:30 PM 12:30 PM 12:45 PM 12:45 PM 12:45 PM 12:45 PM	8:30 AM 0:15 8:45 AM 0:15 9:00 AM 0:15 9:00 AM 0:15 9:15 AM 0:15 9:15 AM 0:15 9:30 AM 0:15 9:30 AM 0:15 9:30 AM 0:15 9:30 AM 0:15 9:45 AM 0:15 9:45 AM 0:15 10:00 AM 0:15 10:15 AM 0:15 10:15 AM 0:15 10:30 AM 0:15 10:30 AM 0:15 11:00 AM 0:15 11:00 AM 0:15 11:15 AM 0:15 11:30 AM 0:15 11:30 AM 0:15 11:45 AM 0:15 12:00 PM 0:15 12:15 PM 0:15 12:30 PM 0:15 12:30 PM 0:15 12:30 PM 0:15 12:45 PM 0:15 12:45 PM 0:15 12:45 PM <td< td=""><td>8:30 AM 0:15 0.50 8:45 AM 0:15 0.75 9:00 AM 0:15 0.75 9:00 AM 0:15 1.00 9:15 AM 0:15 1.25 9:30 AM 0:15 1.25 9:30 AM 0:15 1.50 9:45 AM 0:15 1.75 10:00 AM 0:15 2.00 10:15 AM 0:15 2.25 10:00 AM 0:15 2.25 10:00 AM 0:15 2.25 10:00 AM 0:15 2.50 10:15 AM 0:15 2.50 10:30 AM 0:15 2.50 10:30 AM 0:15 3.00 11:10 AM 0:15 3.25 11:00 AM 0:15 3.50 11:15 AM 0:15 3.50 11:15 AM 0:15 3.50 11:30 AM 0:15 3.50 11:45 AM 0:15 4.00 12:15 PM 0:15 4.25 <</td><td>8:30 AM 0:15 0.50 38.31 8:45 AM 0:15 0.75 7.666 9:00 AM 0:15 1.00 4.728 9:15 AM 0:15 1.25 3.737 9:30 AM 0:15 1.25 3.737 9:30 AM 0:15 1.50 3.489 9:45 AM 0:15 1.75 3.09 10:00 AM 0:15 2.00 2.362 10:15 AM 0:15 2.25 1.977 10:30 AM 0:15 2.50 2.666 10:45 AM 0:15 2.75 1.768 11:00 AM 0:15 3.25 1.821 11:30 AM 0:15 3.25 1.821 11:30 AM 0:15 3.50 1.988 11:45 AM 0:15 3.75 2.613 12:00 PM 0:15 4.25 1.857 12:30 PM 0:15 4.50 2.487 12:30 PM 0:15 4.50 2.487 12:30 PM</td><td>8:30 AM 0:15 0.50 38.31 110.9 8:45 AM 0:15 0.75 7.666 118.6 9:00 AM 0:15 1.00 4.728 123.3 9:15 AM 0:15 1.25 3.737 127.1 9:30 AM 0:15 1.50 3.489 130.5 9:45 AM 0:15 1.75 3.09 133.6 10:00 AM 0:15 1.75 3.09 133.6 10:00 AM 0:15 2.25 1.977 138.0 10:15 AM 0:15 2.75 1.768 142.4 10:30 AM 0:15 2.75 1.768 142.4 11:00 AM 0:15 3.25 1.821 146.5 11:30 AM 0:15 3.50 1.988 148.4 11:45 AM 0:15 3.75 2.613 151.1 12:00 PM 0:15 3.75 2.613 151.1 12:00 PM 0:15 4.25 1.857 154.9 12:15</td></td<>	8:30 AM 0:15 0.50 8:45 AM 0:15 0.75 9:00 AM 0:15 0.75 9:00 AM 0:15 1.00 9:15 AM 0:15 1.25 9:30 AM 0:15 1.25 9:30 AM 0:15 1.50 9:45 AM 0:15 1.75 10:00 AM 0:15 2.00 10:15 AM 0:15 2.25 10:00 AM 0:15 2.25 10:00 AM 0:15 2.25 10:00 AM 0:15 2.50 10:15 AM 0:15 2.50 10:30 AM 0:15 2.50 10:30 AM 0:15 3.00 11:10 AM 0:15 3.25 11:00 AM 0:15 3.50 11:15 AM 0:15 3.50 11:15 AM 0:15 3.50 11:30 AM 0:15 3.50 11:45 AM 0:15 4.00 12:15 PM 0:15 4.25 <	8:30 AM 0:15 0.50 38.31 8:45 AM 0:15 0.75 7.666 9:00 AM 0:15 1.00 4.728 9:15 AM 0:15 1.25 3.737 9:30 AM 0:15 1.25 3.737 9:30 AM 0:15 1.50 3.489 9:45 AM 0:15 1.75 3.09 10:00 AM 0:15 2.00 2.362 10:15 AM 0:15 2.25 1.977 10:30 AM 0:15 2.50 2.666 10:45 AM 0:15 2.75 1.768 11:00 AM 0:15 3.25 1.821 11:30 AM 0:15 3.25 1.821 11:30 AM 0:15 3.50 1.988 11:45 AM 0:15 3.75 2.613 12:00 PM 0:15 4.25 1.857 12:30 PM 0:15 4.50 2.487 12:30 PM 0:15 4.50 2.487 12:30 PM	8:30 AM 0:15 0.50 38.31 110.9 8:45 AM 0:15 0.75 7.666 118.6 9:00 AM 0:15 1.00 4.728 123.3 9:15 AM 0:15 1.25 3.737 127.1 9:30 AM 0:15 1.50 3.489 130.5 9:45 AM 0:15 1.75 3.09 133.6 10:00 AM 0:15 1.75 3.09 133.6 10:00 AM 0:15 2.25 1.977 138.0 10:15 AM 0:15 2.75 1.768 142.4 10:30 AM 0:15 2.75 1.768 142.4 11:00 AM 0:15 3.25 1.821 146.5 11:30 AM 0:15 3.50 1.988 148.4 11:45 AM 0:15 3.75 2.613 151.1 12:00 PM 0:15 3.75 2.613 151.1 12:00 PM 0:15 4.25 1.857 154.9 12:15

Project Name:	PE Complex Replacement -	Compton College	Project No.:	10-57575PW
Project Location:	Compton, California		Boring Test Number:	BP-3
Tested by:	КН		Diameter of Boring (in)	8
Liquid Description:	Domestic Water		Depth of Boring (ft):	25
Measurement Metho	d: Sounder		Water Remaining:	No

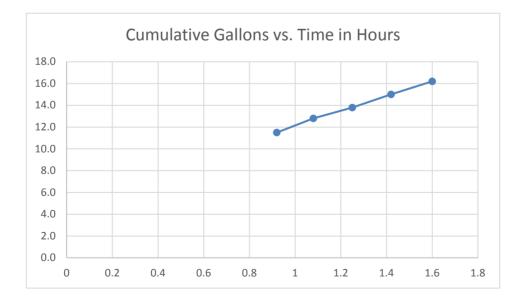
Water Depth	Raw Flow Rate	4.3 CF/HR
Reading	Raw Measured Rate	0.11 FT/HR
6 ft	Reduction Factors	
Wetted Perim	Drywell Perc Test	2
2.10 ft	Site Variability	2
Wetted Bottom	Long-Term Siltation	3
0.35 sf		
Wetted Area	Total Reduction	12
40 sf	Design Infiltration Rate	0.01 FT/HR
Gravel Area		0.11 in/hr
0.21 sf		
Gravel Porosity		
0.3		
Voids		

0.28 cf/ft

Shallow Borehole Percolation Testing Field Log

Project Name:	PE Complex Replacen	ent - Compton Collei Project No.:	10-57575PW
Project Location:	Compton, California	Boring Test Number:	BP-4
Tested by:	КН	Diameter of Boring (in)	8
Liquid Description:	Water	Depth of Boring (ft):	5
Measurement Method:	Sounder	Water Remaining:	No
Depth to Test (ft):	4		

Reading Number	Time Start/End (hh:mm)	Time Interval Between Readings	Total Time Elapse (HR)	Volume of Water Needed per Reading (gal)	Cumulative Volume (gal)	Notes/Comments Head Drop
1	3:16 PM 3:31 PM	0:15	0.25	4.283	4.3	6 1/2
2	3:31 PM 3:41 PM	0:10	0.42	2.465	6.7	4 7/8
3	3:41 PM 3:51 PM	0:10	0.58	2.413	9.2	2 1/2
4	3:53 PM 4:03 PM	0:10	0.75	1.069	10.2	6 1/2
5	4:05 PM 4:15 PM	0:10	0.92	1.241	11.5	4 1/8
6	4:16 PM 4:26 PM	0:10	1.08	1.307	12.8	3 1/4
7	4:28 PM 4:38 PM	0:10	1.25	1.066	13.8	3 5/8
8	4:40 PM 4:50 PM	0:10	1.42	1.194	15.0	3 1/2
9	4:52 PM 5:03 PM	0:11	1.60	1.166	16.2	3 5/8



Shallow Borehole Percolation Testing Field Log

Project Name:	PE Complex Replacement - Comp	oton College Project No.:	10-57575PW
Project Location:	Compton, California	Boring Test Number:	BP-4
Tested by:	КН	Diameter of Boring (in	8
Liquid Description:	Domestic Water	Depth of Boring (ft):	5
Measurement Metho	d: Sounder	Water Remaining:	No

Water Depth	Raw Flow Rate	0.9 CF/HR
Reading	Raw Measured Rate	0.4 FT/HR
4 ft	Reduction Factors	
Wetted Perim	Drywell Perc Test	2
2.10 ft	Site Variability	2
Wetted Bottom	Long-Term Siltation	3
0.35 sf	•	
Wetted Area	Total Reduction	12
2 sf	Design Infiltration Rat	0.03 FT/HR
Gravel Area		0.38 in/hr
0.21 sf		
Gravel Porosity		
0.3	-	

APPENDIX VII HISTORIC SEISMIC EVENTS

Historic Seismicity (1900 to 2018) Within 100 km Search Radius and M_w > 5.0 Proposed Instructional Building #2, Compton College 1111 East Artesia Blvd., Compton, CA 90221

Local System Date and Time (UTC-08:00)	Latitude	Longitude	Depth (km)	Magnitude (M _w)	Place
2014-03-29T04:09:42.170Z	33.9325	-117.9158	5.1	5.1	2km NW of Brea, CA
2008-07-29T18:42:15.670Z	33.9485	-117.7663	15.5	5.4	5km S of Chino Hills, CA
1997-04-26T10:37:30.670Z	34.3690	-118.6700	15.9	5.1	12km ESE of Piru, California
1995-06-26T08:40:28.940Z	34.3940	-118.6690	12.8	5.0	11km SW of Valencia, California
1994-03-20T21:20:12.260Z	34.2310	-118.4750	12.4	5.2	3km WNW of Panorama City, California
1994-01-29T11:20:35.970Z	34.3060	-118.5790	0.6	5.1	6km NNE of Chatsworth, California
1994-01-19T21:11:44.900Z	34.3780	-118.6190	10.8	5.1	10km SSW of Valencia, California
1994-01-19T21:09:28.610Z	34.3790	-118.7120	13.8	5.1	8km ESE of Piru, California
1994-01-18T00:43:08.890Z	34.3770	-118.6980	10.7	5.2	10km ESE of Piru, California
1994-01-17T23:33:30.690Z	34.3260	-118.6980	9.1	5.6	7km NNE of Simi Valley, California
1994-01-17T12:40:36.120Z	34.3400	-118.6140	5.4	5.2	9km N of Chatsworth, California
1994-01-17T12:31:58.120Z	34.2750	-118.4930	5.3	5.9	1km ENE of Granada Hills, California
1994-01-17T12:30:55.390Z	34.2130	-118.5370	18.2	6.7	1km NNW of Reseda, CA
1991-06-28T14:43:54.660Z	34.2700	-117.9930	8.0	5.8	13km NNE of Sierra Madre, CA
1990-02-28T23:43:36.750Z	34.1440	-117.6970	3.3	5.5	6km NNE of Claremont, CA
1988-12-03T11:38:26.450Z	34.1510	-118.1300	13.7	5.0	1km SSE of Pasadena, CA
1987-10-04T10:59:38.190Z	34.0740	-118.0980	7.7	5.3	2km WSW of Rosemead, CA
1987-10-01T14:42:20.020Z	34.0610	-118.0790	8.9	5.9	2km SSW of Rosemead, CA
1981-09-04T15:50:48.700Z	33.5575	-119.1195	5.5	5.5	11km NNW of Santa Barbara Is., CA
1979-01-01T23:14:38.620Z	33.9165	-118.6872	13.3	5.2	13km S of Malibu Beach, CA
1973-02-21T14:45:56.140Z	33.9790	-119.0502	10.0	5.3	22km W of Malibu, CA
1971-02-09T14:10:29.040Z	34.4160	-118.3700	6.0	5.3	10km SSW of Agua Dulce, CA
1971-02-09T14:02:45.740Z	34.4160	-118.3700	6.0	5.8	10km SSW of Agua Dulce, CA
1971-02-09T14:01:12.450Z	34.4160	-118.3700	6.0	5.8	10km SSW of Agua Dulce, CA
1971-02-09T14:00:41.920Z	34.4160	-118.3700	9.0	6.6	10km SSW of Agua Dulce, CA
1970-09-12T14:30:53.000Z	34.2548	-117.5343	10.8	5.2	3km W of Lytle Creek, CA
1941-11-14T08:41:38.350Z	33.7907	-118.2637	6.0	5.1	5km E of Lomita, CA
1938-05-31T08:34:56.580Z	33.6993	-117.5112	10.2	5.2	8km ENE of Trabuco Canyon, CA
1933-03-11T06:58:45.610Z	33.6238	-118.0012	6.0	5.3	7km W of Newport Beach, CA
1933-03-11T05:18:48.490Z	33.7667	-117.9850	6.0	5.0	2km ENE of Westminster, CA
1933-03-11T01:54:10.660Z	33.6308	-117.9995	6.0	6.4	7km WNW of Newport Beach, CA
1922-03-10T11:21:04.000Z	34.2430	-119.0970	10.0	6.5	Greater Los Angeles area, California
1918-04-21T22:32:29.000Z	33.6470	-117.4330	10.0	6.7	Southern California